Броня как защищает сталь

Боевая защита для пехотинцев и наземной техники

Баллистическая броня для пехоты изготавливается из полотна на основе арамидных волокон. Часто можно услышать, как такой материал называют кевлар, но это не совсем корректно. Кевлар — это известная торговая марка, которая производит баллистическую ткань. Узнаваемость превратила имя собственное в нарицательное. Из этой статьи ты узнаешь про баллистическую защиту для военнослужащих, мы перечислим все основные материалы и технологии, включая керамику и высокомодульный полиэтилен. Также мы расскажем, из чего и как делают такую же броню для наземной техники, а еще приоткроем тайну, чего ждать в будущем.

Баллистическая ткань очень легкая и эластичная, при этом достаточно прочная, чтобы задержать пулю. Это оптимально для производства бронежилетов для пехоты. Такие средства защиты относятся ко второму классу, иногда — к третьему. Защиту не видно под одеждой, она не стесняет движения, при этом соответствует своему назначению. Ткань используется самостоятельно или в качестве подкладки под плотные пластины, в таком случае она будет улавливать осколки, которые смогли пробить твердый элемент.

Как производят бронежилеты?

Так как бронежилет прикрывает верхнюю половину тела, он должен защитить жизненно важные органы в области груди и живота. Используются материалы со сберегающими свойствами, они оберегают от осколков и пуль, рассеивают их энергию. Чаще всего их делают из арамида, кевлара, титана или стали, пластин из керамики. Отечественные производители обычно отдают предпочтение кевлару, поэтому название у нас так сильно распространено.

Используется 30-50 слоев ткани в сочетании с демпферным буфером из ватина. Большее количество слоев предоставило бы более высокую защиту, но тогда движения человека были бы стеснены. Именно поэтому придерживаются золотой середины. Для строчек используются только армированные нити. В выкройках есть карманы, в конце производства в них будут вшиты пластинки-бронеэлементы, к примеру, стальные или керамические.

Вес может составлять от 2 до 20 кг, чем больше бронеэлементов и слоев — тем тяжелее. Очень плотные изделия не только мешают свободно двигаться, но и вызывают перегрев с последующим тепловым ударом. Задерживать тепло будет даже самый тонкий бронежилет, поэтому их нельзя носить постоянно.

Материалы

Какой будет использоваться материал зависит от того, какому классу брони должно соответствовать изделие. В свою очередь класс подбирается в зависимости от оружия, от которого должна защитить броня. Рассмотрим самые распространенные типы материала, а узнать о классах ты можешь из статьи “Подробный обзор классов бронежилетов разных стран мира”.

Баллистические ткани

Это текстильные ткани, созданные из арамидных волокон. Из них делают бронежилеты как для военных, так и для гражданских людей. Эти волокна тонкие, как паутинки, обычно они желтые, но бывают и других цветов. Из волокон делают нити, из них — ткани, в результате получается достигнуть высокой прочности к механическим воздействиям. В России крупнейшими марками являются СВМ, РУСАР. Эксперты мирового уровня высказываются, что потенциал российских арамидных волокон не раскрыт полностью. В качестве примера они приводят тот факт, что наши изделия превосходят зарубежные по соотношению веса и защитных свойств. Некоторые композитные структуры не уступают сверхмолекулярному полиэтилену, но при этом их плотность примерно в полтора раза ниже.

Сталь и алюминиевые сплавы

Впервые использовать бронепластины начали еще в Средневековье, затем про них надолго забыли. Об альтернативном решении рассказывается в статье “Как выглядела мягкая броня средневековья – Гамбезон?”.

Практика возобновилась только во времена Первой и Второй Мировой войны. Но легкие сплавы появились не тогда, а позже. В период Афганской войны стали изготавливать бронежилеты со вставками из титана и алюминия. Это позволило сделать пластинки тоньше, примерно в два-три раза относительно стальных. Соответственно, вес тоже существенно снизился.

Алюминий способен защитить от бронебойных пуль на 12,7 и 14,5 мм. Помимо этого он оберегает от осколков и мин. Титан превосходит по механическим качествам, к тому же он обладает исключительной коррозионной стойкостью, то есть очень практичен. Сплавы титана обладают разными свойствами в зависимости от добавок.

Керамические элементы

В 80-е годы появилась очередная новинка — замена определенных элементов на керамику с целью улучшить соотношение веса и степени защиты. Но применять такие вставки можно исключительно с материалами из баллистических волокон. Решение не очень практичное, так как керамика хрупкая и требует аккуратного отношения, что невозможно соблюсти в условиях военных действий.

В 90-е годы Министерство обороны поставило задачу сделать керамические панели более практичными. Так появилась отечественная разработка “Гранит-4”, это целая серия бронепанелей. Однако, несмотря на недостаток, за границей основная масса вставок в бронежилетах делается именно из керамики. Их изготовление не очень энергоемкое и дорогое. А недостаток не такой уж существенный, так как вероятность того, что солдат будет дважды поражен в одну и ту же зону на теле очень невысока.

Высокомодульный полиэтилен

Он же — слоистый пластик. На данный момент считается одним из самых технологичных и современных видов, обеспечивает защиту 1-3 класса. Лидирует СВМПЭ — сверхмодульный полиэтилен, он максимально легкий, а по прочности практически не уступает арамидным волокнам. Еще одно преимущество — способность плавать и не терять своих качеств. Арамидные тоже обладают положительной плавучестью, но при попадании в воду они снижают степень защиты.

Очень жаль, но делать такие бронежилеты для военных нельзя. На поле боя велика вероятность столкнуться с открытым огнем или очень горячими предметами. Хоть панели и высокомодульные, но они в ракурсе огнестойкости остаются полиэтиленом. Его нельзя подвергать нагреванию выше 90 градусов. Поэтому из служащих такая броня применима только для полицейских, так изготавливают жилеты для них.

От пистолетных пуль и осколков СВМПЭ защищает очень хорошо, но он не сможет противостоять твердосплавному сердечнику, как и термоуплотненному. Для улучшения характеристик этот материал используется в сочетании с композитными бронепанелями.

Комбинированная броня

Комбинированный тип — это практично, составляющие подбираются в зависимости от предполагаемой эксплуатации. При использовании в сочетании материалы улучшают свойства друг друга и позволяют наиболее точно приблизиться к оптимальным по всем показателям характеристикам.

В наши дни большое значение имеют уже не непосредственно материалы для изготовления бронежилетов, а типы покрытия. Нанотехнологии подводят индустрию к периоду глобального обновления. Уже сейчас разрабатываются такие изделия, которые превосходят используемые по механической устойчивости, но при этом значительно легче и тоньше. К этому стремятся приблизиться за счет нанесения на кевлар с водоотталкивающими свойствами особого геля, состоящего из наночастиц. Благодаря этому стойкость исходного материала пятикратно повышается. Соответственно в том же классе могут присутствовать средства защиты, которые тоньше, легче и удобнее.

Читайте также:  Как делятся стали по свариваемости

Броня для наземной техники

Техника, которая находится на поле боя на земле, функционирует в насыщенных условиях, она может подвергнуться воздействию всех средств поражения. В этом ее отличие от тех средств, которые используют в воздухе, на воде и под ней. Она сталкивается со снарядами, пулями, осколками, ракетами в калибре от 5,45 до 203 мм. Еще одна сложности в небольшом расстоянии от атакующего, кораблю на принятие решение отводится гораздо больше времени, чем танку. Это причины, по которым броня наземной техники должна быть исключительно прочной и надежной. Степень защиты определяется распределением брони и ее весом относительно массы всей конструкции.

Бронезащита

Многократно преображалась, прошла эволюционирование от литой и катаной брони до стальной гетерогенной, в составе которой несколько слоев различной плотности. Она не могла не развиваться, так как идет нога в ногу со средствами поражения, а они не стоят на месте. Прорывом стало появление кумулятивных элементов, они относительно недорогие и компактные, отличаются универсальностью. Еще один прорыв — появление композитной защиту, в которую входят не только броневые стали, но и детали не из металла: ткани, про которые рассказывалось выше, фарфор, керамика.

Динамическая

Является активной, разрушает кумулятивную струю или боеприпас, подрывая небольшое количество взрывчатого вещества. Причем стимулом к подрыву становится сам атакующий элемент. Данный тип брони весьма распространен на современных российских наземных боевых машинах.

Электрическая и электромагнитная

В наиболее перспективных моделях используется защита нового типа, она работает по разным принципам. Один из них — выбрасывание защитного щита в ту сторону, откуда идет атака. Заброс осуществляется не за счет подрыва взрывчатки, а в результате электро-температурного влияния на экран. Применяются принципы электромагнитного воздействия, тогда на кумулятивную струю или снаряд действует высоковольтный разряд, который несет в себе энергию 10-20 кДж.

У защиты такого типа есть преимущество — небольшая отдача на носитель. Благодаря этому ее можно устанавливать на легкую бронетехнику. Окружающие объекты, к примеру, сопутствующие пехотинцы тоже получают минимальное воздействие. Есть и недостаток, это необходимость установки сильного источника энергии. Это реализуемо на платформах с электрическими двигателями, но для традиционных силовых установок весьма проблематично.

Мы рассмотрели разные типы защиты, в том числе и баллистическую броню, способы противостояния атаке для пехотинцев и военной наземной технике. В эту сферу внедряются самые инновационные решения, однако, некоторые старые технологии все еще остаются востребованными и незаменимыми.

Источник

Броневые материалы. Современное состояние

БРОНЕВЫЕ МАТЕРИАЛЫ. СОВРЕМЕННОЕ СОСТОЯНИЕ.

Несмотря на бурное развитие наноматериалов и новых технологий сталь все еще остается одним из основных броневых материалов для обеспечения защиты сухопутной, да и морской военной техники.

Традиционно броневые стали делятся на противоснарядные или толстолистовые (толщины 30-120 мм) и противопульные или тонколистовые (толщины 2-25 мм).

В СССР основное производство толстолистовых броневых сталей было сосредоточено на Украине (Днепропетровск,Запорожье и Мариуполь), выпускались в основном высокопрочные броневые стали электрошлакового переплава (ЭШП) марок 22Ш и 24Ш. По своим защитным характеристикам эти стали не уступали, а даже превосходили зарубежные аналоги, такие как ХН654 и ХН113 (Германия),Armox-270 (Швеция),Mars-240 (Франция). С распадом Советского Союза России пришлось переносить броневое производство на свою территорию и сегодня выпуск такой брони организован на заводах Красный октябрь (г. Волгоград), ОМЗ Спецсталь (г. С.Петербург) и ММК (г. Магнитогорск).

Что касается новинок, то ни в России, ни за рубежом каких либо значимыхразработок в этой области не ведется и достигнутый уровень прочности в 1000-1450 МПа и, соответственно, бронестойкости,вряд ли в ближайшем будущем изменится. Правда, российского потребителя не совсем устраивает нынешняя цена на толстую броню, которая существенно выросла после переноса производства в Россию. А поскольку доля затрат на броневые материалы в структуре цены, например, танка, составляет 12-15%, то снижение их стоимости реальный путь для снижения цены на сам танк.

Один из очевидных путей для снижения цены — доведение характеристик броневых сталей, полученных открытой выплавкой в кислородных конверторах, до характеристик сталей ЭШП. Броневые стали открытой выплавки почти в 2 раза дешевле сталей ЭШП, но до последнего времени обеспечить требуемую чистоту этих сталей от вредных примесей, таких как фосфор, сера, и др., влияющих на броневые характеристики, не удавалось. Сегодня эта проблема усилиями ММК, ОАО НИИ стали и УВЗ практически решена.

В отличие от толстой стальной брони в области тонколистовых противопульных сталей сегодня наблюдается настоящий бум. За последние 4-6 лет на рынок броневых материаловбыло выпущено целое семейство ультравысокопрочных противопульных сталей. В Швеции семейство сталей АRMOXпополнилось новыми маркамиАRMOX-600 и АRMOX-Advance. Во Франции появились и серийно выпускаютсяновые маркиMARS-300 иMARS-600, в Германии запущена в производство линейка противопульных сталейSecure, даже Финляндияосвоила производство собственных ультравысокопрочных сталейRAMORиMIILUX. Уровень прочности этих сталей 2000-2250МПа, твердость 550-640НВ, стали показывают хорошую живучесть, в т.ч. при отрицательных температурах.

Россия тоже пополнила перечень своих противопульных сталей. Так сейчас на вооружение МО РФ принимается ультравысокопрочная сталь марки 44С-Cв-Ш разработки ОАО НИИ стали, которая уже получила литеру О1и вносится в документацию на перспективные образцы ВВТ.

Основное назначение этих сталей противопульное бронирование легкобронированной техники. В табл.1. приведены характеристики новых противопульных сталей, появившихся на зарубежном и отечественном рынках.

Табл.1.Новые броневые противопульные стали для ВиВТ

Высокая прочность этих сталей достигается в первую очередь увеличением содержания углерода. Оно доходит в них уже до 0,47-0,50%. Сохранение пластических характеристик обеспечивается сочетанием таких технологических переделов, как вакуумирование, электрошлаковый переплав, контролируемая прокатка и ТМО.

Как видно российская противопульная броня находится на уровне лучших мировых трендов, хотя проблемы в России пока остаются и, в первую очередь, они связаны с отсутствием специализированного броневого производства.

Алюминиевая броня сегодня широко применяется в первую очередьв легкобронированной технике БМП, БТР, БМД и т.п.Она является идеальным материалом для бронекорпусного производства, обеспечивая максимальную жесткость тонкобронных конструкций. При этом дает определенные преимущества в бронестойкости в сравнении со сталью.

Пионером использования алюминия, а точнее сплавов на основе алюминия в качестве брони, являются США, где уже в конце 50-х годов был начат выпуск бронетранспортера М113, до настоящего времени находящегося на вооружении стран НАТО. Здесь в качестве брони был использован обычный конструкционныйнетермоупрочняемый сплав средней прочности — сплавсистемыAlMgMn, по американской классификации сплав 5083, ближайшим аналогом которого по российским стандартам является сплав АМг5. Этот сплав может быть отнесён к сплавам средней прочности и охарактеризован как свариваемый и коррозионностойкий. Следующим этапом развития алюминиевого бронекорпусного производства в США стал переход на использование специально разработанной алюминиевой брони — термоупрочняемоговысокопрочного сплава системыAlZnMg. Он получил обозначение — сплав 7039. Эта алюминиевая броня была использована для бронекорпусов БМП М2 Брэдлии лёгкого танка М551Шеридан.

Читайте также:  Алюминий пластик алюминий лист как называется

В Англии работы по алюминиевому бронекорпусному производству привели к разработке лёгкого танка Скорпиони целого семейства машин на его базе. Основой создания бронекорпуса послужил термоупрочняемыйсплав собственной разработки, сплав 7017 системы AlZnMg. Во Франции, в свою очередь, разработана собственная алюминиевая броня сплав А-Z5-G. Из неё изготовлена боевая машина пехоты АМХ10Р, поступившая на вооружение французских сухопутных войск в 1973 году.

История российской (советской) алюминиевой брони для сухопутной военной техники началась с алюминиевых бронедеталей из сплава АЦМ (среднелегированный термоупрочняемый сплав системыAl-Zn-Mgразработки ВИЛС), входящих во фронтальную проекцию БМП-1 и формирующие её верхнелобовую, надмоторную часть. Однако, как и в зарубежных странах, российские разработчики быстро пришли к необходимости создания специальных броневых сплавов. Такие сплавы были разработаны в начале 70-х годов (разработчик — НИИ стали). Они получили название АБТ-101 (сплав 1901) и АБТ-102 (сплав 1903). Эти сплавы стали основой для разработки корпусов БМД-1, БМД-2, БМД-3, БМП-3 и других машин на их базе и до сих пор являются базовыми при проектировании перспективных образцов легкобронированной техники.

Если сравнивать российскую алюминиевую броню с зарубежными аналогами, то сразу можно заметить разницу в подходах к проектированию броневых алюминиевых сплавов, что проявляется не только в металловедческом аспекте. Так, зарубежная алюминиевая броня, как правило, разрабатывается в жесткой привязке к ее назначению, чего нет в России. Именно это является одной из причин, что за рубежом, в частности, в США, сегодня официально приняты на вооружение и используются не 2-3 универсальных алюминиевых броневых сплава, как в России, а десятки, и у каждого строго определено назначение и область применения.

В табл.2 приведены некоторые из них, которые наиболее часто применяются в бронезащите военной техники США в сравнении со сплавами России.

Табл.2.Механические свойства зарубежной и российской алюминиевой брони для легкобронированнойтехники

Кроме того, в отличие от запада российские разработчики все активнее применяют слойные или так называемые гетерогенные алюминиевые материалы, т.е. материалы, у которых лицевой и тыльный слои отличаются хим.составом и, соответственно, прочностными параметрами. Лицевой слой как наиболее прочный обеспечивает максимальную стойкость, а тыльный слой (менее прочный, но более вязкий)- исключает раскол брони, т.е. обеспечивает ее живучесть. И если в западных странахслойная алюминиевая броня так и не вышла из опытно-экспериментального этапа, то в России она уже давно серийно выпускается и применяется наряду сАБТ-101 и АБТ-102 в составе все тех же БМД и БМП. Помимо известных марок слойной алюминиевой брони, таких как ПАС-1 и ПАС-2 сегодняОАО НИИ стали предлагает широкий спектр их модификаций, отличающихся не только хим.составом слоев, но и их количеством. Это позволяет поднять стойкость слойных алюминиевых броневых материалов на 7-15% в сравнении с гомогенными.

Титановая броня давно привлекает разработчиков средств защиты.Этот материал дает выигрыш в сравнении со стальной илиалюминиевой броней при обстреле практически любыми пулями стрелкового оружия и даже при снарядном обстреле. Это связано с тем, что по прочности титановые сплавы приближаются к стальной броне, но они почти на 40% легче.

В конце 60-х годов в НИИ стали совместно с ВИЛС, ВИАМ, ИМЕТ им.А.Байкова и ВСМПО были проведены работы по созданиютитанового корпуса танка. Противоснарядная титановая броня этого танка (сплав ОТ4-1) позволяла снизить массу корпусана 20-30%в сравнении со стальным аналогом. Однако применение титана и в России и за рубежом в качестве брони не получило развития из-за его высокой цены. Титановая броняпочти в 10 раз дороже стальной и стоит почти столько же, что и керамическая броня. Кроме того до последнего времени высокопрочный титан оставался весьма дефицитным материалом.

Несколько лет назад ВСМПО АВИСМА при участии ОАО НИИ стали был разработан и испытан новый экономнолегированный титановый сплавVST-2. Этот сплав изготавливается с применением титановых отходов (титановая губка, стружка, и пр.), что делает его значительно дешевле традиционных высокопрочных титановых сплавов типа ВТ6. При этом механические свойства сплава оказались весьма высокими, а испытания обстрелом подтвердили его уникальные броневые характеристики. Сегодня этот сплав становится конкурентоспособным и рекомендуется для применения, в первую очередь, в средствах индивидуальной бронезащиты (СИБ), а такжедля легкобронированной техники, обеспечивая почти 20% выигрыш по массев сравнении с традиционной стальной броней при обстреле бронебойными пулями калибра 7,62-12,7 мм.

Дальнейшее повышение баллистических характеристик титановой брони связано с созданием гетерогенных структур. Сегодня разработчики исследуют технологии ТВЧ илиплазменной обработки поверхности титана, позволяющие создавать уникальные гетерогенные металлокерамические структуры, прекрасно работающие против бронебойных пуль стрелкового оружия.

Керамику как броневой материал одним из первых в мире начал применять бывший Советский союз.Причем керамика начала применяться как в бронетанковой технике, так и в СИБ. Уже в 1968 году в башне танка Т-64Абыла использована керамика в виде корундовых шаров, обеспечивающая существенное повышение противокумулятивной и противоснаряднойзащиты. В начале 80-х годов в Афганистане был применен первый бронежилет 6Б4 с керамическими бронеэлементами. Созданная в то время керамическая броня на основе карбида бора (В4С) по своим характеристикамдо сих пор находится на уровне лучших мировых аналогов. Напомним, что применение керамики позволяет снизить массу противопульной защиты на 30-45%.

Развал СССРи годы перестройки далеко отбросили Россию от передовых позиций, и в настоящее время ей приходится восстанавливать как научную, технологическую, так ипроизводственную инфраструктуру в областикерамической брони, чтобы выйти на мировой уровень. Сегодня российские разработчики и производители броневой керамики сумели приблизить ее качество к стандартам передовых западных компаний.Однако полностью удовлетворить потребности российского рынка в броневой керамике они пока не в состоянии. Так по оценкам новосибирского предприятия НЭВЗ-керамикс потребности российских разработчиков защитыв бронекерамике составляют 2500-3000 тонн в год, тогда как все российские производители могут поставить нарынок не более 30-40% от его потребности.

В настоящее времяиз существующего разнообразиякерамических материалов для броневых целей используется весьма ограниченное их количество это корунд или оксид алюминия (Al2O3), карбид кремния (SiC) и карбид бора (B4C). В табл.3 приведены основные российские производители броневой керамики. Пока основу российской керамической брони составляют корунд и карбид кремния. Для сравнения в США только для бронежилетов выпускается около 1500 тонн керамики из карбида бора одного из лучших броневых керамических материалов.

Читайте также:  Активированная медь что это

Табл.3. Основные российские производителибронекерамики.

В табл.4 приведены сравнительные характеристики керамических бронематериалов и их относительная стоимость в сравнении с корундом.

Тенденции мирового рынка в области керамических бронематериалов, определившиесяеще в начале 2000-х годов, сохраняются и поныне. Для СИБ идет расширение производства дорогой, но самой эффективной керамики на основе В4С, а для военной техники корунда или карбида кремния.

Кроме жестких металлических и керамических преград в средствах защиты все более широкое применениеполучают тканые инетканые полимерные материалы . Среди них наиболее известны арамиды.

Арамиды практически одновременно начали применяться и за рубежом и в СССР в конце 70-х начале 80-х годов. Эру этих эффективных броневых материалов открыли знаменитый Кевлар (США) и советский ТСВМ-ДЖ. Сегодня в мире создано и применяется несколько десятков различных марок арамидных тканей, отличающихся диаметром исходных волокон (микрофиламентов), диаметром комплексных нитей, способом плетения, ценой и т.д. Эти материалы стали неотъемлемой частью бронежилетов, шлемов, широко используются в качестве противоосколочных экранов или подложек для керамических бронепанелей.

В конце 90-х годов в США был создан новый тип полимерных волокон РВО, типичным представителем которого стал материалZylon. Этот материал давал выигрыш в сравнении с Кевларом по стойкости, но как показала его эксплуатация в реальных условиях он оказался нестоек к воздействию ультрафиолета и другим климатическим факторам и его защитные характеристикисо временем быстро снижались. Причем снижение броневых свойств достигало 20-25%. По этой причинеданныйкласс материалов в средствах защиты пока находит ограниченное применение.

Следующим типомволокон броневого назначения стали волокна из класса фениленов. Типичным представителемявляется волокно М5, которое сегодня используется за рубежом в средствах защиты в первую очередь, в бронежилетах. Это волокно имеет броневые характеристики, сравнимые с волокномZylon, а по стойкостик климатическим факторам с арамидами.

Однако сегодня наиболее перспективнымидля баллистической защиты практически всеми разработчиками средств защиты признаются волокна на основе высокомолекулярного полиэтилена.Материалы группы высокомолекулярных (высокомодульных) полиэтиленов (highmoduluspolyethylene,HMPE), производящиеся по технологии вытягивания нити из геля, в наши дни получили широкое распространение как в обычной жизни, так и в военной области.

Высокомолекулярный полиэтилен (СВМПЭ) для России достаточно новый материал. Он начал использоваться в СИБ всего 5-7 лет назад, хотя за рубежом он применяется с начала 80-х годов и в настоящее время известно более десятка марок этого материала. Среди них наиболее известны и широко используются материалы с торговой маркой Dyneema разработки голландской фирмыDSMи Spectra разработки американской компанииHoneywell.

Волокнос торговой маркой Dyneema было запатентовано фирмойDSMв 1979 году. Для его производства использовался полиэтилен с ультравысоким молекулярным весом (UHMWPE). В обычном состоянии молекулы этого материала располагаются хаотичным образом. Однако если эти молекулы ориентировать взаданном направлении (вдоль волокна), то можно получить волокно с уникальными прочностными характеристиками. В обычномUHMWPEориентация молекул невысокая, в волокне Dyneemaориентация молекул достигает 95% и выше. По показателю прочности равновесомое волокно Dyneema в 15 раз прочнее стали и на 40% прочнее арамидов. Кроме этого СВМПЭ не боится воды и нейтрален к любым агрессивным средам. Единственный его недостаток он теряет защитные свойствапри высоких температурах(свыше +70°) и горит.

Технология получения броневого материала из волокон СВМПЭ принципиально отличается от технологии получения арамидных композитов.

Арамидные элементарные волокна (микрофиламенты) собираются в комплексную нить. Затем из комплексной нити производится плетение ткани, где нити пересекаются друг с другом. В зависимости от вида плетения (саржа, полотно и др.) эти пересеченияполучаются соответствующей плотности. Между тем, практикой установлено, что любые пересечения нитей в броневом волоконном композите отрицательно сказывается на его броневых свойствах. Разработчики арамидов, поэтому, пытаются использовать технологии, при которых арамидное волокно получало бы минимальное деформирование как при получении комплексных нитей, так и при ткачестве.

Эти проблемы удалось избежать при производстве броневых композитов из волокна СВМПЭ. Комплексная нить из в них не подвергается плетению. Нити укладываются в одном направлении и, не переплетаясь, соединяются с другим слоем, нити которого располагаются в другом направлении. Такие материалы называют однонаправленными композитами (UD-материалы).

Сегодня арамидные материалы отечественного производства по своим баллистическим характеристикам не уступают лучшим зарубежным аналогам, хотя при этом их цена существенно выше. А вот СВМПЭ Россия до сих пор не производит иразработчики защиты используют только импортные материалы, в основном китайского или израильского производства.

Правда, ГК Ростех еще в 2015 годусообщал о проекте созданияпроизводственных мощностей по производству СВМПЭ на площадке Казаньоргсинтез с выпуском уже в 2017 году не менее 1200 тонн этого волокна и доведения его мощностей к 2020 году до 4000 тонн. В конце 2016 годаготовилось постановление Правительства РФ об отмене НДС для ввозимого оборудования, необходимого для производства такого полиэтилена.Однако пока российские разработчики средств защиты продолжают ориентироваться на импортные материалы и до полного импортозамещения здесь еще далеко.

В таблице 5 представлены сравнительные данные по массовым и ценовым характеристикам защитных структур из полимерных волоконных материалов.

Хорошо видно, что баллистические пакеты из отечественных арамидов (колонки 2-3), обеспечивающие защиту от стандартного осколка (шарик массой 1г), по массовым характеристикам примерно соответствуют таким же структурам из СВМПЭ, но значительно (в 2-3 раза) их дороже. Также видно, что отечественные баллистические арамидные ткани хотя и лучше западных аналогов, но существенно дороже.

Если не брать во внимание экзотические броневые материалы, которые иногда применяются в защите и материалы для прозрачной брони, то, пожалуй, на рассмотренных здесь материалах выбор у разработчиков бронезащиты и заканчивается. В любом случае они являются основой для создания многообразия тех защитных структур, которые используются на существующей военной технике и в СИБ. Естественно, эти материалы применяются в различных сочетаниях, обеспечивая максимальную защиту от заданных средств поражения при минимальных массовых и габаритных характеристиках. Кроме того усиление защищенности достигается применением специальных защитных комплексов, таких как динамическая защита, активная защита, средства маскировки и т.д.

О применении таких комплексов на бронетанковой технике было рассказано в журнале Экспорт вооружений №2 за 2016 год.

Авторы: Алексеев М.О., Чистяков Е.Н., Купрюнин Д.Г.

Источник

Поделиться с друзьями
Металл и камни