Что такое ферромагнитное железо



Свойства ферромагнитных материалов и их применение в технике

Вокруг проводника с электрическим током, даже в вакууме, существует магнитное поле. И если в это поле внести вещество, то магнитное поле изменится, поскольку любое вещество в магнитном поле намагничивается, то есть приобретает больший или меньший магнитный момент, определяемый как сумма элементарных магнитных моментов, связанных с частями, из которых состоит данное вещество.

Суть явления заключается в том, что молекулы многих веществ обладают собственными магнитными моментами, ведь внутри молекул движутся заряды, которые образуют элементарные круговые токи, и значит сопровождаются магнитными полями. Если внешнего магнитного поля к веществу не приложено, магнитные моменты его молекул ориентированы в пространстве хаотично, и суммарное магнитное поле (как и общий магнитный момент молекул) такого образца будет равно нулю.

Ежели образец внести во внешнее магнитное поле, то ориентация элементарных магнитных моментов его молекул приобретет под действием внешнего поля преимущественное направление. В результате суммарный магнитный момент вещества уже не будет нулевым, ведь магнитные поля отдельных молекул в новых условиях не компенсируют друг друга. Так у вещества возникает магнитное поле B.

Если же молекулы вещества изначально не имеют магнитных моментов (есть и такие вещества), то при внесении подобного образца в магнитное поле, в нем индуцируются круговые токи, то есть молекулы приобретают магнитные моменты, что опять же в результате приводит к возникновению у образца суммарного магнитного поля B.

Большинство известных веществ слабо намагничиваются в магнитном поле, но встречаются и такие вещества, которые отличаются сильными магнитными свойствами, их то и называют ферромагнетиками. Примеры ферромагнетиков: железо, кобальт, никель, а также их сплавы.

К ферромагнетикам относятся твердые вещества, которые при невысоких температурах обладают самопроизвольной (спонтанной) намагниченностью, сильно изменяющейся под действием внешнего магнитного поля, механической деформации или изменяющейся температуры. Именно так ведут себя сталь и железо, никель и кобальт, а также из сплавы. Их магнитная проницаемость в тысячи раз выше чем у вакуума.

Именно по этой причине в электротехнике для проведения магнитного потока и для преобразования энергии традиционно используют магнитопроводы из ферромагнитных материалов.

У подобных веществ магнитные свойства зависят от магнитных свойств элементарных носителей магнетизма — электронов, движущихся внутри атомов. Конечно, электроны, двигаясь по орбитам в атомах вокруг своих ядер, образуют круговые токи (магнитные диполи). Но при этом электроны вращаются еще и вокруг своих осей, создавая спиновые магнитные моменты, которые как раз и играют главную роль в намагничивании ферромагнетиков.

Ферромагнитные свойства проявляются лишь тогда, когда вещество пребывает в кристаллическом состоянии. Кроме того данные свойства сильно зависят от температуры, ведь тепловое движение препятствует устойчивой ориентации элементарных магнитных моментов. Так, для каждого ферромагнетика определяется конкретная температура (точка Кюри), при которой структура намагничивания разрушается и вещество превращается в парамагнетик. Например для железа это 900 °C.

Читайте также:  Stellaris как построить титана

Даже в слабых магнитных полях ферромагнетики способны намагнититься до состояния насыщения. Кроме того их магнитная проницаемость зависит от величины приложенного внешнего магнитного поля.

Вначале процесса намагничивания магнитная индукция B в ферромагнетике растет сильнее, а значит магнитная проницаемость его велика. Но когда наступает насыщение, дальнейшее увеличение магнитной индукции внешнего поля не приводит больше к нарастанию магнитного поля ферромагнетика, и значит магнитная проницаемость образца уменьшилась, теперь она стремится к 1.

Важное свойство ферромагнетиков — остаточная намагниченность. Допустим, в катушку поместили ферромагнитный стержень, и, повышая ток в катушке, довели его до насыщения. После этого отключили ток в катушке, то есть убрали магнитное поле катушки.

Можно будет заметить, что стержень размагнитился не до того состояния, в котором он пребывал вначале, его магнитное поле окажется больше, то есть будет иметь место остаточная индукция. Стержень превратился таким образом в постоянный магнит.

Чтобы обратно размагнитить такой стержень, необходимо будет приложить к нему внешнее магнитное поле противоположного направления, и с индукцией равной остаточной индукции. Значение модуля магнитной индукции поля, которое необходимо приложить к намагниченному ферромагнетику (постоянному магниту) чтобы размагнитить его, называется коэрцитивной силой.

Явление, когда при намагничивании ферромагнетика индукция в нем отстает от индукции приложенного магнитного поля, называется магнитным гистерезисом (смотрите — Что такое гистерезис).

Кривые намагничивания (петли гистерезиса) у разных ферромагнитных материалов отличаются друг от друга.

У некоторых материалов петли гистерезиса широкие — это материалы с высокой остаточной намагниченностью, их относят к магнитно-твердым материалам. Магнитно-твердые материалы применяют в изготовлении постоянных магнитов.

Магнитно-мягкие материалы наоборот — имеют узкую петлю гистерезиса, малую остаточную намагниченность, они легко перемагничиваются в слабых полях. Именно магнитно-мягкие материалы применяют в качестве магнитопроводов трансформаторов, статоров двигателей и т. п.

Сегодня ферромагнетики играют очень важную роль в технике. Магнитно-мягкие материалы (ферриты, электротехнические стали) используются в электромоторах и генераторах, в трансформаторах и дросселях, а также в радиотехнике. Из ферритов изготавливают сердечники катушек индуктивности.

Магнитно-твердые материалы (ферриты бария, кобальта, стронция, неодим-железо-бор) применяют для изготовления постоянных магнитов. Постоянные магниты находят широкое применение в электроизмерительных и акустических приборах, в двигателях и генераторах, в магнитных компасах и т. д.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Что такое ферромагнитное железо

К ферромагнетикам (ferrum – железо) относятся вещества, магнитная восприимчивость которых положительна и достигает значений . Намагниченность и магнитная индукция ферромагнетиков растут с увеличением напряженности магнитного поля нелинейно, и в полях намагниченность ферромагнетиков достигает предельного значения , а вектор магнитной индукции растет линейно с :

Читайте также:  Червонным золотом это что

Ферромагнитные свойства материалов проявляются только у веществ в твердом состоянии, атомы которых обладают постоянным спиновым, или орбитальным, магнитным моментом, в частности у атомов с недостроенными внутренними электронными оболочками. Типичными ферромагнетиками являются переходные металлы. В ферромагнетиках происходит резкое усиление внешних магнитных полей. Причем для ферромагнетиков сложным образом зависит от величины магнитного поля. Типичными ферромагнетиками являются Fe, Co, Ni, Gd, Tb, Dy, Ho, Er, Tm, а также соединения ферромагнитных материалов с неферромагнитными: , , и др.

Существенным отличием ферромагнетиков от диа- и парамагнетиков является наличие у ферромагнетиков самопроизвольной (спонтанной) намагниченности в отсутствие внешнего магнитного поля. Наличие у ферромагнетиков самопроизвольного магнитного момента в отсутствие внешнего магнитного поля означает, что электронные спины и магнитные моменты атомных носителей магнетизма ориентированы в веществе упорядоченным образом.

Основные отличия магнитных свойств ферромагнетиков.

1. Нелинейная зависимость намагниченности от напряженности магнитного поля Н (рис. 6.5).

Как видно из рис. 6.5, при наблюдается магнитное насыщение.

2. При зависимость магнитной индукции В от Н нелинейная, а при – линейная (рис. 6.6).

3. Зависимость относительной магнитной проницаемости от Н имеет сложный характер (рис. 6.7), причем максимальные значения μ очень велики ( ).

Впервые систематические исследования μ от Н были проведены в 1872 г. А.Г. Столетовым (1839–1896) – выдающимся русским физиком, организатором физической лаборатории в Московском университете. На рис. 6.8. изображена зависимость магнитной проницаемости некоторых ферромагнетиков от напряженности магнитного поля – кривая Столетова.

4. У каждого ферромагнетика имеется такая температура, называемая точкой Кюри ( ), выше которой это вещество теряет свои особые магнитные свойства.

Наличие температуры Кюри связано с разрушением при упорядоченного состояния в магнитной подсистеме кристалла – параллельной ориентации магнитных моментов. Для никеля температура Кюри равна 360 °С. Если подвесить образец никеля вблизи пламени горелки так, чтобы он находился в поле сильного постоянного магнита, то не нагретый образец может располагаться горизонтально, сильно притягиваясь к магниту (рис. 6.9). По мере нагрева образца и достижения температуры ферромагнитные свойства у никеля исчезают и образец никеля падает. Остыв до температуры ниже точки Кюри, образец вновь притянется к магниту. Нагревшись, вновь падает и т.д., колебания будут продолжаться все время, пока горит свеча.

5. Существование магнитного гистерезиса.

На рисунке 6.10 показана петля гистерезиса – график зависимости намагниченности вещества от напряженности магнитного поля Н.

Намагниченность при называется намагниченностью насыщения.

Намагниченность при называется остаточной намагниченностью (что необходимо для создания постоянных магнитов).

Напряженность магнитного поля, полностью размагниченного ферромагнетика, называется коэрцитивной силой. Она характеризует способность ферромагнетика сохранять намагниченное состояние.

Большой коэрцитивной силой (широкой петлей гистерезиса) обладают магнитотвердые материалы. Малую коэрцитивную силу имеют магнитомягкие материалы.

Измерение гиромагнитного отношения для ферромагнетиков показали, что элементарными носителями магнетизма в них являются спиновые магнитные моменты электронов.

Читайте также:  Какую резьба лучше для алюминия

Самопроизвольно, при , намагничиваются лишь очень маленькие монокристаллы ферромагнитных материалов, например никеля или железа. Для того чтобы постоянным магнитом стал большой кусок железа, необходимо его намагнитить, т.е. поместить в сильное магнитное поле, а затем это поле убрать. Оказывается, что при большой исходный кусок железа разбит на множество очень маленьких ( ), полностью намагниченных областей – доменов. Векторы намагниченности доменов в отсутствие внешнего магнитного поля ориентированы таким образом, что полный магнитный момент ферромагнитного материала равен нулю. Если бы в отсутствие поля кристалл железа был бы единым доменом, то это привело бы к возникновению значительного внешнего магнитного поля, содержащего значительную энергию (рис. 6.11, a). Разбиваясь на домены, ферромагнитный кристалл уменьшает энергию магнитного поля. При этом, разбиваясь на косоугольные области (рис. 6.11, г), можно легко получить состояние ферромагнитного кристалла, из которого магнитное поле вообще не выходит. В целом в монокристалле реализуется такое разбиение на доменные структуры, которое соответствует минимуму свободной энергии ферромагнетика. Если поместить ферромагнетик, разбитый на домены, во внешнее магнитное поле, то в нем начинается движение доменных стенок. Они перемещаются таким образом, чтобы областей с ориентацией вектора намагниченности по полю стало больше, чем областей с противоположной ориентацией (рис. 6.11, б, в, г). Такое движение доменных стенок понижает энергию ферромагнетика во внешнем магнитном поле. По мере нарастания магнитного поля весь кристалл превращается в один большой домен с магнитным моментом, ориентированным по полю (рис. 6.11, а).

Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнитомягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнитожесткие материалы применяют при изготовлении постоянных магнитов.

Широкое распространение в радиотехнике, особенно в высокочастотной радиотехнике, получили ферриты ( ) сочетающие ферромагнитные и полупроводниковые свойства.

Магнитные материалы широко используются в традиционной технологии записи информации в винчестере (рис. 6.12).

Рис. 6.12 Рис. 6.13

Магнитное вещество 2 (рис. 6.13) нанесено тонким слоем на основу твердого диска 3. Каждый бит информации представлен группой магнитных доменов (в идеальном случае – одним доменом). Для перемагничивания домена (изменения направления вектора его намагниченности) используется поле записывающей головки 4 (5 – считывающая головка). Наличие дополнительных стабилизирующих слоев, препятствует самопроизвольной потере информации. Записью на вертикально ориентированные домены достигается плотность до 450 Гбайт/см 2 .

Рис. 6.14 Рис. 6.15

На рисунке 6.14 изображены первые магнитные диски созданные в 1955 г, имевшие название IBM 350 Disk File, с обьемом 5 Мб и размером 24 дюймов.

В 1971 г. было произведено первое применение IBM3330 магнитного диска, созданного в 1957 г. с использованием магнитной головки и слота (рис. 6.15).

Источник

Поделиться с друзьями
Металл и камни