Что такое сталь для отливок

Сталь для отливок (литейная сталь)

Сталь для отливок обыкновенная
03Н12Х5М3ТЛ 03Н12Х5М3ТЮЛ 08ГДНФЛ 08Х17Н34В5Т3Ю2Л 110Г13Л
120Г13Х2БЛ 12ДН2ФЛ 12ДХН1МФЛ 12Х7Г3СЛ 13НДФТЛ
13ХНДФТЛ 14Х2ГМРЛ 15ГЛ 15ГНЛ 15Л
20Г1ФЛ 20ГЛ 20ГНМФЛ 20ГСЛ 20ДХЛ
20Л 20ФЛ 20ХГСНДМЛ 20ХГСФЛ 20ХМЛ
20ХМФЛ 23ХГС2МФЛ 25ГСЛ 25Л 25Х2Г2ФЛ
25Х2ГНМФЛ 25Х2НМЛ 27Х5ГСМЛ 30ГЛ 30ГСЛ
30Л 30Х3С3ГМЛ 30ХГСФЛ 30ХГФРЛ 30ХНМЛ
32Х06Л 35ГЛ 35Л 35НГМЛ 35ХГСЛ
35ХМЛ 35ХМФЛ 35ХН2МЛ 35ХНЛ 40Л
40ХЛ 45ГЛ 45Л 45ФЛ 50Л
55Л 80ГСЛ
Сталь для отливок с особыми свойствами
07Х17Н16ТЛ 07Х18Н9Л 08Х14Н7МЛ 08Х14НДЛ 08Х15Н4ДМЛ
08Х17Н34В5Т3Ю2РЛ 09Х16Н4БЛ 09Х17Н3СЛ 10Х12НДЛ 10Х14НДЛ
10Х17Н10Г4МБЛ 10Х18Н11БЛ 10Х18Н3Г3Д2Л 10Х18Н9Л 110Г13ФТЛ
110Г13Х2БРЛ 120Г10ФЛ 12Х18Н12БЛ 12Х18Н12М3ТЛ 12Х18Н9ТЛ
12Х25Н5ТМФЛ 130Г14ХМФАЛ 14Х18Н4Г4Л 15Х13Л 15Х18Н22В6М2Л
15Х18Н22В6М2РЛ 15Х23Н18Л 15Х25ТЛ 16Х18Н12С4ТЮЛ 18Х25Н19СЛ
20Х12ВНМФЛ 20Х13Л 20Х20Н14С2Л 20Х21Н46В8Л 20Х21Н46В8РЛ
20Х25Н19С2Л 20Х5МЛ 20Х5ТЛ 20Х8ВЛ 31Х19Н9МВБТЛ
35Х18Н24С2Л 35Х23Н7СЛ 40Х24Н12СЛ 40Х9С2Л 45Х17Г13Н3ЮЛ
55Х18Г14С2ТЛ 85Х4М5Ф2В6Л 90Х4М4Ф2В6Л

Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
Сталь для отливок труба, лента, проволока, лист, круг Сталь для отливок

Особенности структуры литейной стали: отличительной особенностью литой стали является грубозернистость ее строения, которая обусловливает низкий механические свойства, особенно характеристики пластичности и вязкости металла. Крупнозернистая структура также весьма неблагоприятно влияет на показатели сопротивления микропластическим деформациям металла. Поэтому решение теоретических и практических вопросов измельчения структуры литой стали имеет весьма актуальное значение.

Проблема улучшения структуры литой стали явилась предметом многочисленных исследований различных авторов. Предложены различные способы воздействия на металл в жидком и твердом состоянии, обеспечивающие значительное улучшение ее свойств.

В ряде работ рассмотрены вопросы измельчения структуры посредством рациональной термической обработки. Показано, что однократный отжиг (или нормализация) литой стали с нагревом немного выше критической точки Ас3 обычно не обеспечивает получения мелкозернистой структуры в стальных отливках.

Посредством сложной термообработки можно измельчить структуру, значительно повысить однородность и механические свойства литой среднеуглеродистой стали. К примеру, для стали с 0,4% С рекомендуется термообработка, состоящая из трехкратного отжига последовательно при температурах 1100-1300, 900-1100 и 850-870° С с медленным охлаждением после 1 и 2-го отжигов ниже критических точек и закалки с температуры последнего отжига. Такой термообработкой можно улучшить структуру литой стали (ликвидация ферритной макросетки, благоприятное изменение характера неметаллических включений) и значительно повысить ее пластичность и ударную вязкость. После двойной нормализации (с 930 и 830° С) по сравнению с однократной (при 860° С) предел текучести стали 35Л повышается с 33,5 до 40,5 кгс/мм 2 , относительное удлинение с 17,5 до 25,3%.

Исследования структурного механизма образования аустенита при нагреве стали, в значительной степени облегчили решение практических задач улучшения структуры и свойств металла с исходной грубозернистой структурой.

При образовании аустенита в процессе нагрева так же, как при его распаде в процессе охлаждения, соблюдается ориентационное соответствие превращающихся фаз а-у. В начальный период а-у превращения независимо от условий нагрева и исходной структуры образование аустанита происходит при сохранении ориентационного соответствия с исходными кристаллами ос-фазы. Зарождение аустенита при нагреве может происходить на субграницах феррита, на высокоугловых границах феррита и карбида в перлитных колониях и границах исходных зерен. При медленном нагреве стали с исходной кристаллографически упорядоченной структурой зарождение аустенита происходит преимущественно на субграницах феррита с восстановлением форм и размеров бывшего аустенитного зерна и внутризеренной текстуры. Разрушение внутризеренной текстуры и измельчение зерна в стали становится возможным при повышении температуры обычно значительно выше Ас3 в результате рекристаллизации аустенита с повышенной от превращения плотностью дефектов вследствие фазового наклепа. При этом рекристаллизация аустенита проходит после растворения карбидных частиц и примесных фаз, находившихся на субграницах.

Ускорение нагрева, особенно в межкритическом интервале температур, способствует образованию участков аустенита на высокоугловых границах феррита и карбида наряду с образованием участков аустенита на субграницах.

Вблизи карбидных частиц при ускоренном нагреве в связи с различием в коэффициентах теплового расширения между матрицей и этими частицами возникают новые источники дефектов. Эти дефекты способствуют возникновению участков аустенита, из которых могут образоваться новые зерна, не связанные с исходной ориентировкой зерна. Это облегчает исправление строения стали с исходной грубозернистой структурой.

В отличие от деформированной доэвтектоидной углеродистой стали, в которой процесс структурной перекристаллизации аустенита обычно заканчивается при переходе через точку Ас3 или лишь немного выше Ас3, в литой стали этот процесс сдвинут к более высоким температурам. Устранение внутризеренной текстуры при рекристаллизации аустенита при температурах значительно выше Ас3 позволяет существенно повысить однородность структуры и характеристики размерной стабильности литой стали.

Краткие обозначения:
σв — временное сопротивление разрыву (предел прочности при растяжении), МПа ε — относительная осадка при появлении первой трещины, %
σ0,05 — предел упругости, МПа Jк — предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 — предел текучести условный, МПа σизг — предел прочности при изгибе, МПа
δ5,δ4,δ10 — относительное удлинение после разрыва, % σ-1 — предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж — предел текучести при сжатии, МПа J-1 — предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν — относительный сдвиг, % n — количество циклов нагружения
s в — предел кратковременной прочности, МПа R и ρ — удельное электросопротивление, Ом·м
ψ — относительное сужение, % E — модуль упругости нормальный, ГПа
KCU и KCV — ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T — температура, при которой получены свойства, Град
s T — предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ — коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB — твердость по Бринеллю C — удельная теплоемкость материала (диапазон 20 o — T ), [Дж/(кг·град)]
HV — твердость по Виккерсу pn и r — плотность кг/м 3
HRCэ — твердость по Роквеллу, шкала С а — коэффициент температурного (линейного) расширения (диапазон 20 o — T ), 1/°С
HRB — твердость по Роквеллу, шкала В σ t Т — предел длительной прочности, МПа
HSD — твердость по Шору G — модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Источник

Литейные стали. Виды, свойства, маркировка литейных сталей

К литейным сталям относят железоуглеродистые сплавы, содержащие до 2,14 % С и другие элементы (Mn, Si, Р, S, Cr, Ni, W, Mo, V и т. д.), попавшие в сталь из шихтовых материалов либо специально введенные в нее в определенных количествах для придания сплаву необходимых эксплуатационных и технологических свойств.

В настоящее время стальные отливки используют во всех отраслях машиностроения; по объему производства они занимают второе место после чугунов. Из сталей отливают обычно детали, к которым предъявляют повышенные требования по прочности, пластичности, надежности и долговечности в процессе эксплуатации. Литейные стали классифицируют в основном по способу выплавки, химическому составу, структуре, назначению.

Литейные стали по химическому составу подразделяют на:

Углеродистые стали по химическому составу подразделяют на:

  • низкоуглеродистые (0,09…0,2 % С);
  • среднеуглеродистые (0,2…0,45 % С);
  • высокоуглеродистые (0,5…1,0 % С).

Легированные литейные стали подразделяют на:

  • низколегированные (сумма легирующих элементов до 2,5 %);
  • среднелегированные (сумма легирующих элементов 2,5…10 %);
  • высоколегированные (сумма легирующих элементов более 10 %).

Стальные отливки (ГОСТ 977-88) изготовляют всеми способами литья из конструкционных нелегированных (15Л; 20Л; 25Л; 30Л; 35Л; 40Л; 45Л; 50Л), конструкционных легированных (20ГСЛ; 30ГСЛ; 35ГЛ; 40ХЛ; 20ФЛ; 30ХГСФЛ; 30ХНМЛ; 32Х06Л и других) и легированных со специальными свойствами (20X1ЗЛ – коррозионностойкие; 40Х9С2Л – жаростойкие; Р6М4Ф2Л – быстрорежущие; 110Г13Л – износостойкие и других) сталей.

Отливки по качественным показателям делят на три группы:

  1. – обычного назначения и качества;
  2. – ответственного назначения и повышенного качества;
  3. – особо ответственного назначения и повышенного качества.

Маркировка сталей буквенно-цифровая:

  • буква «Л» означает, что сталь литейная;
  • первые цифры указывают среднюю и максимальную (при отсутствии нижнего предела) массовую долю углерода в сотых долях процента;
  • буквы за цифрами означают:
    • А – азот;
    • Б – ниобий;
    • В – вольфрам;
    • Г – марганец;
    • Д – медь;
    • М – молибден;
    • Н – никель;
    • Р – бор;
    • С – кремний;
    • Т – титан;
    • Ф – ванадий;
    • X – хром;
    • Ю – алюминий;
    • Л – литейная.

Цифры, стоящие после букв, указывают примерную массовую долю легирующего элемента в процентах.

Таблица 1. Классификация литейных сталей

Литейные стали Марки сталей Характеристика
Конструкционные нелегированные 15Л, 20Л, 25Л, ЗОЛ, 35Л, 40Л,
45Л, 50Л
Конструкционные легированные 20ГЛ, 35ГЛ, 20ГСЛ, ЗОГСЛ,
20ПФЛ, 20ФЛ, ЗОХГСФЛ, 45ФЛ,
32Х06Л, 40ХЛ, 20ХМЛ, 20ХМФЛ,
20ГНМФЛ, 35ХМЛ, 30ХНМЛ,
35ХГСЛ, 35НГМЛ, 20ДХЛ,
08ГДНФЛ, 13ХНДФТЛ, 12ДН2ФЛ,
12ДХН1МФЛ, 23ХГС2МФЛ,
12Х7ГЗСЛ, 25Х2ГНМФЛ,
27Х5ГСМЛ, 30ХЗСЗГМЛ,
03Н12Х5МЗТЛ, 03Н12Х5МЗТЮЛ
Легированные со специальными свойствами:
мартенситного класса 20X13Л, 08X14НДЛ, 09Х16Н4БЛ,

09Х17НЗСЛ, 10Х12НДЛ

Коррозионностойкие
20Х5МЛ, 20Х8ВЛ, 40Х9С2Л Жаростойкие
20Х12ВНМФЛ Жаропрочные
85Х4М5Ф2В6Л (Р6М5Л) Быстрорежущие
мартенситно-ферритного класса 15Х13Л Коррозионностойкие
ферритного класса 15Х24ТЛ Коррозионностойкие
аустенитно-мартенситного класса 08Х15Н4ДМЛ, 08Х14Н7МЛ, 14Х18Н4Г4Л Коррозионностойкие
аустенитно-ферритного класса 12Х25Н5ТМФЛ, 16Х18Н12С4ТЮЛ, 10Х18НЗГЗД2Л Коррозионностойкие
аустенитного класса 10Х18Н9Л, 12Х18Н9ТЛ, 10Х18Н11БЛ,

07Х17Н16ТЛ, 12Х18Н12МЗТЛ

Коррозионностойкие
55Х18Г14С2ТЛ, 15Х23Н18Л,

45Х17Г1ЗНЗЮЛ

Жаростойкие
35Х18Н24С2Л,

20Х21Н46В8РЛ

Жаропрочные
11ОГ1ЗЛ, 110Г13Х2БРЛ,

110Г1ЗФТЛ

Износостойкие

1. Литейные углеродистые стали

Для получения отливок используются углеродистые стали, содержащие 0,12–0,60 % С. Они маркируются числом, обозначающим среднее содержание углерода (в сотых долях процента) и буквой «Л» (табл. 2). Литейные стали отличаются от деформируемых большим допуском на содержание примесей, а также несколько пониженной пластичностью.

Таблица 2. Механические свойства конструкционной нелегированной стали

Марка стали Кате-гория проч-ности Предел теку-чести σт, МПа Временное сопроти-вление σв, МПа Относи-тельное удлине-ние δ, % Относи-тельное сужение ψ, % Ударная вязкость KCU,

кДж/м 2

Кате-гория проч-ности Предел теку-чести σт, МПа Времен-ное сопроти-вление σв, МПа Относи-тельное удлине-ние δ, % Относи-тельное сужение ψ, % Ударная вязкость KCU,

кДж/м 2

Не менее Не менее
Нормализация или нормализация с отпуском Закалка и отпуск
15Л К20 196 392 24 35 491
20Л К20 216 412 22 35 491
25Л К20 235 441 19 30 392 КТ30 294 491 22 33 343
30Л К25 255 471 17 30 343 КТ30 294 491 17 30 343
35Л К25 275 491 15 25 343 КТ35 343 540 16 20 294
40Л К30 294 520 14 25 294 КТ35 343 540 14 20 294
45Л К30 314 540 12 20 294 КТ40 392 589 10 20 245
50Л К30 334 569 11 20 245 КТ40 392 736 14 20 294

В зависимости от назначения и предъявляемых требований все отливки из углеродистых и легированных сталей подразделяют на три группы:

  1. – отливки общего назначения, контролируемые по внешнему виду, размерам и химическому составу;
  2. – отливки ответственного назначения, контролируемые, кроме того, по прочности (σв или σт) и относительному удлинению;
  3. – отливки особо ответственного назначения, контролируемые дополнительно к указанным характеристикам по ударной вязкости.

В числе контролируемых параметров могут включаться также микроструктура, пористость, герметичность и другие специальные характеристики.

Химический состав сталей полностью не приводится, так как существенно изменяется только содержание углерода, которое определяет марку стали и ее основные свойства.

Марганец (0,3–0,9 %) раскисляет сталь и нейтрализует вредные примеси серы, а также несколько повышает прочность стали. С железом сера образует сульфид FeS и легкоплавкую эвтектику Fe-FeS по границам зерен, в результате чего возникает красноломкость и склонность к образованию горячих трещин. При введении марганца в соотношении % Мn >1,71 % S образуются более тугоплавкие сульфиды MnS, располагающиеся в виде неметаллических включений внутри зерна; в результате красноломкость исчезает.

Кремний (0,2–0,5 %) вводится в сталь как раскислитель и дегазатор. Даже в небольших количествах он заметно упрочняет феррит и снижает пластичность стали.

Требования по содержанию марганца и кремния в литейных углеродистых сталях рассматриваются как факультативные: отклонения от них не являются признаком брака.

Сера и фосфор в сталях, за редким исключением, являются вредными примесями. Их содержание ограничивается в пределах 0,45– 0,06 % S и 0,04–0,08 % Р, в зависимости от группы и габаритных размеров отливок; с увеличением размеров требования ужесточаются. Как уже упоминалось, сера вызывает красноломкость стали, а фосфор – снижение пластичности при комнатной температуре.

Механические свойства сталей определяются содержанием углерода; по мере его увеличения от 0,15 до 0,55 % σв возрастает от 400 до 600 МПа, а δ снижается с 24 до 10 %, уменьшается также ударная вязкость с 0,49 до 0,24 МДж/м 2 . Это изменение свойств объясняется возрастанием доли перлита в микроструктуре стали.

Область применения литейных нелегированных сталей:

  1. 15Л; 20Л; 25Л – копровые бабы, блоки, ролики, корпусы, поводки, захваты, арматура, фасонные отливки, шкивы, траверсы, поршни, буксы, крышки цилиндров, корпусы подшипников.
  2. 35Л; 40Л; 45Л – рычаги, балансиры, корпусы редукторов, муфты, шкивы, кронштейны, станины, балки, опорные кольца, бандажи, маховики, зубчатые колеса, тяги, валики.
  3. 50Л; 55Л – шестерни, бегунки, колеса, зубчатые колеса подъемно-транспортных машин.

Особенности литейных свойств углеродистых сталей.

Литейные свойства углеродистых сталей значительно хуже литейных свойств чугуна и других сплавов. Низкая жидкотекучесть сталей объясняется, главным образом, самой высокой (кроме титановых сплавов) температурой ликвидуса и соответственно низкой температурой заливки. Суммарная объемная усадка затвердевания и усадка в жидком состоянии составляет 6,0 %. Поэтому стальные отливки, как и отливки всех других сплавов, кроме чугуна, необходимо получать с прибылями.

Для стальных отливок характерно развитие пористости, в них чаще, чем в отливках из других сплавов, образуются горячие трещины, даже в случаях литья в песчано-глинистые формы. В то же время холодные трещины в стальных отливках возникают реже, чем в чугунных отливках. К насыщению газами и неметаллическим включениям стали более склонны, но и требования для них выше, чем для чугунов. К ликвации, особенно по сере и фосфору, склонны стальные отливки с толщиной стенки более 80 мм. Как правило, ликвации подвергнуты слитки, имеющие существенно большую толщину.

К изменению механических свойств, в зависимости от толщины стенок, литейные углеродистые стали менее чувствительны, чем другие сплавы, особенно, учитывая обязательную их термическую обработку.

2. Легированные литейные стали

Легирование литейных углеродистых сталей проводится с целью повышения механических свойств и приобретения ими специальных служебных свойств.

К легированным сталям относят низко- и среднелегированные стали с содержанием легирующих компонентов, соответственно, до 2,5 и от 2,5 до 10 %. Химический состав легированных сталей в соответствии с ГОСТ 977-88 приведен в табл. 3, а их механические свойства после термической обработки (закалки (нормализации) и отпуска) – в табл. 4.

Чаще других применяют стали, легированные кремнием, марганцем, хромом и никелем, медью и др. Известно много композиций марганцевой стали, различающихся содержанием углерода и марганца. Обычно их содержание колеблется в пределах, соответственно, 0,17…0,4 % С и 1,0…2,0 % Mn. Марганцевые стали отличаются более высокой прочностью и особенно большей прокаливаемостью, чем углеродистые. Марганцевые стали широко используются при изготовлении отливок для железнодорожного транспорта, экскаваторов и других машин.

Таблица 3. Средний химический состав легированных сталей, мас. %

Марка стали С Мn Si Cr Ni Cu V Mo
20ГЛ 0,20 1,4 0,3
35ГЛ 0,35 1,4 0,3
35ГСЛ 0,30 1,3 0,7
20ФЛ 0,20 0,9 0,3 0,12
45ФЛ 0,45 0,7 0,3 0,15
40ХЛ 0.40 0,7 0,3 1,0
35ХМЛ 0,35 0,7 0,3 1,0 0,25
30ХНМЛ 0,30 0,7 0,3 1,5 1,5 0,25
35ХГСЛ 0,35 1,2 0,7 0,8
23ХГС2МФЛ 0,23 0,7 1,9 0,9 0,12 0,25
20ДХЛ 0,12 0,6 0,3 1,0 1,5
08ГДНФЛ  0,1 0,8 0,3 1,3 1,0 0,10
12ДХН1МФЛ 0,12 0,4 0,3 1,5 1,6 0,5 0,12 0,25

Содержание S и Р не более 0,03…0,05 % каждого.

Таблица 4. Механические свойства легированных сталей

Марка стали Температура, °С Механические свойства, не менее
закалки

(нормализации)

отпуска σв,

Н/мм 2

στ,

Дж/м 2

20ГЛ (890) 630 540 275 18 491
35ГЛ (890) 630 540 294 12 294
35ГСЛ 930 610 650 400 14 0,5
20ФЛ (890) 630 491 294 18 491
45ФЛ 860 630 687 491 12 294
40ХЛ 860 630 638 491 12 392
35ХМЛ 870 630 687 540 12 392
30ХНМЛ 870 630 785 638 10 392
35ХГСЛ 875 650 785 589 10 392
23ХГС2МФЛ 990 220 1275 1079 6 392
20ДХЛ (880) 580 491 392 12 294
08ГДНФЛ (930) 620 741 343 18 491
12ДХН1МФЛ 900 530 981 735 10 294

У хромовых сталей (40ХЛ и др.) также повышенные, по сравнению с углеродистой сталью, механические свойства и прокаливаемость. Для улучшения их структуры и свойств используют небольшие добавки молибдена, устраняющие склонность к отпускной хрупкости. Хромовые стали применяют для получения отливок, работающих в условиях абразивного износа.

Большая прокаливаемость достигается при легировании стали одновременно марганцем, хромом и кремнием (30ХГСЛ, хромансил). Одновременное легирование хромом и никелем проявляется в измельчении зерна, в значительном увеличении прокаливаемости, что позволяет изготовлять из этих сталей крупногабаритные отливки (30ХНМЛ и др.). Стали, легированные медью, подвержены дисперсионному твердению, которое обеспечивает однородные свойства в тонких и толстых сечениях отливок. Некоторые марки легированных сталей модифицируют бором, кальцием, церием и другими РЗМ. В результате улучшаются механические и литейные свойства стали.

Как правило, добавки вводятся в малых количествах. Так, например, достаточно иметь 0,001…0,002 % В в стали, чтобы получить резкое увеличение прокаливаемости и пластичности. В одних случаях действие добавок связывается с модифицированием, в других – с микролегированием. Графитизированная сталь, также относящаяся к легированным, содержит 0,9…1,5 % С, 1,0…1,4 % Si, 0,5 % Mn.

В литом состоянии ее структура представлена перлитом и цементитом, т. е. весь углерод находится в связанном состоянии. При термической обработке (отжиг с нагревом до 900 °С и последующее медленное охлаждение в интервале температур 800…700 °С) происходит распад структурно свободного цементита с выделением графита. Окончательная структура стали – перлит + графит. Такая графитизированная сталь обладает повышенными антифрикционными свойствами и используется для втулок, вкладышей, работающих в условиях абразивного износа.

Высоколегированные стали. В соответствии с ГОСТ 2176-77, высоколегированные стали, содержащие более 10 % легирующих элементов, подразделяются по структуре на шесть классов: мартенситный; мартенсито-ферритный; ферритный; аустенито-мартенситный; аустенито-ферритный; аустенитный. Смена классов происходит по мере увеличения легированности. На практике чаще пользуются названиями сталей по основным служебным свойствам: коррозионностойкая, кислотостойкая, жаростойкая, жаропрочная, износостойкая.

Большой класс высоколегированных сталей составляют так называемые коррозионностойкие (нержавеющие) стали, обладающие хорошей стойкостью против коррозионного воздействия агрессивных сред. Прежде всего к ним относятся высоколегированные хромовые стали ферритного класса (12Х18ТЛ, 15Х20ТЛ), обладающие хорошей пластичностью. Добавка титана связывает углерод и повышает стойкость против межкристаллитной коррозии.

Для получения высокой твердости и износостойкости хромовых сталей (Х28Л, Х34Л) содержание углерода увеличивают до 0,5…2,0 % и получают феррито-карбидную структуру. Хромовые коррозионностойкие стали мартенситного и феррито-мартенситного классов характеризуются сравнительно широким диапазоном содержания углерода и возможным наличием никеля, меди, ниобия и других элементов.

К сталям этого класса можно отнести стали марок 10Х14НДЛ и 09ХН4БЛ (Б – ниобий). Наивысшей коррозионной стойкостью рассматриваемые стали обладают в том случае, когда карбиды в свободном состоянии отсутствуют и полностью переведены в твердый раствор. Хромовые стали отличаются пониженной, по сравнению с углеродистой сталью, теплопроводностью, повышенной окисляемостью, склонностью к пленообразованию, образованию пригара при заливке в формы на основе кварцевого песка, к образованию усадочных раковин, горячих и холодных трещин.

В качестве кислотoстойких сталей применяют высоколегированные стали аустенитного, аустенито-ферритного и феррито-аустенитного классов. Основными легирующими элементами для них являются хром и никель. При этом никель необходим для получения однофазной аустенитной структуры.

Кислотостойкая хромоникелевая сталь, содержащая 18 % Cr и 8 % Ni, широко используется для отливок деталей насосов, фиттингов и т. п. Чаще других стали этого типа легируют титаном и молибденом (12Х18Н9ТЛ, 12Х18Н12МЗТЛ).

Хромоникелевые стали так же, как и хромовые, обладают пониженными литейными свойствами. Сложнолегированные хромоникелевые стали характеризуются высокой жаропрочностью и жаростойкостью. Жаропрочными называют стали, способные сопротивляться нагрузкам и разрушению при температурах выше 550 °С. Стали, обладающие высокой стойкостью против коррозии и образования окалины при температурах до 1200 °С, называют жаростойкими.

Основным фактором, предопределяющим жаропрочность сталей, является легированный аустенит. Практическое применение для изготовления отливок из жаропрочных сталей получили аустенитные стали типа 12Х18Н9ТЛ (для жаропрочных отливок энергетического, химического и нефтяного машиностроения) и 12Х20Н12ТЛ (для турбинных лопаток, работающих при температурах до 600 °С). В стали 15Х18Н22В6М2Л высокая жаропрочность обеспечивается за счет введения добавок вольфрама и молибдена.

Высокомарганцевая износостойкая сталь 110Г13Л (так называемая «сталь Гадфильда») относится к аустенитному классу. Особенностью отливок из этой стали является способность упрочняться условиях ударной нагрузки и принимать наклеп, повышающий поверхностную твердость от НВ 170…200 до НВ 600…800 и износостойкость в условиях абразивного изнашивания. При отсутствии наклепа ее износостойкость находится на уровне углеродистой стали. В литом состоянии структура стали – аустенит и карбиды, располагающиеся по границам зерен. Данная сталь используется после закалки в воде с температурой 1100 °С, когда отливки приобретают однородную аустенитную структуру.

Температура заливки стали 110Г13Л ниже, чем у других сталей, и колеблется в пределах 1330…1370 °С. Сталь 110Г13Л характеризуется повышенной склонностью к усадочным дефектам, образованию горячих трещин, пригару при литье в формы на основе кварца. Особо следует отметить, что сталь 110Г13Л очень плохо обрабатывается режущим инструментом.

Источник

Читайте также:  Как выбрать золото или серебро подходит
Поделиться с друзьями
Металл и камни