Как делают бескислородную медь

Бескислородная медь: особенности, преимущества, применение

Медь — это минерал, который присутствует в быту человека многие тысячелетия. В древние времена он использовался в основном для получения бронзы в сплаве с оловом. На латинском языке его название — Cuprum. Его дал ему древний остров Кипр, являвшийся одним из первых мест, где из рудников добывали и выплавляли медь.

Историческая справка, характеристика меди

Медь относится к отряду основных химических элементов. В естественном (чистом) виде это металл с красно-оранжевым оттенком. Его используют для изготовления очень большого ряда изделий, к которым относятся провода электрические, посуда, трубы, радиаторы автомобилей и т. п.

Информация археологов говорит о том, что медь начали использовать более десяти тысяч лет назад. Так медный кулон, обнаруженный в северных районах современного Ирака, был изготовлен около 8700 года до нашей эры.

Медь обладает высокими показателями тепловой и электрической проводимости, легко обрабатывается как горячим, так и холодным способом. У нее очень высокая коррозийная стойкость. Это обусловлено тем, что медь создает на своей поверхности очень тонкий оксидный защитный слой в результате реакции ее с кислородом.

Медь нашла широкое применение в производстве акустических, электрических и иных проводов, присутствуя там как металл высокой чистоты либо с небольшими добавлениями серебра, мышьяка, фосфора, теллура, серы.

Процесс получения

Высокоочищенную бескислородную медь получают в процессе так называемого электрического рафинирования. Она оседает на катодах электрических ячеек, вследствие чего имеет и иное название — медь катодная. Чистота достигает порядка 99.99 %. Такой металл называют и медью бескислородной, у которой высокая степень очистки (OFC – Oxygen-Free Copper).

Расплавленная чистая медь впоследствии разливается в специальные формы, которые имеют квадратные либо прямоугольные сечения. Этот процесс происходит в вакууме, при отсутствии кислорода, что предотвращает его проникновение в расплавленный металл. Отсутствие примесей кислорода в такой меди существенно увеличивает показатели ее электропроводности и прочности.

Чистота

Бескислородная медь OFC имеет разные степени очистки. Чистота металла обозначается следующим образом: «* N». На месте звездочки (*) вставляют цифру, которая раскрывает информацию о количествах девяток после запятой. Так, марка бескислородной меди OFC 6N сообщает о том, что чистого металла в ней 99,999999 %. Количество посторонних примесей составляет 0,000001 %.

Первое производство меди качества 6N было осуществлено в 1985 году в Японии, компанией Nippon Mining Co. В массовое производство высоко очищенная бескислородная медь пошла в 1987 году. Основными сферами применения тогда стали акустические провода, межблочные сетевые кабеля.

В настоящее время такую чистую медь производят достаточно много производителей в мире, в том числе и в Российской Федерации.

Отдельными компаниями заявляется, что они достигли степень очистки выше показателя 6 -7N, 8N и т. д. Но при этом следует учитывать, что в настоящее время единства при определении стандартов чистоты бескислородной меди и ее качества нет. В некоторых случаях наличие каких-либо примесей просто не учитывается. Обычно к таким инородным включениям относится серебро.

Достоинства металла

К преимуществам бескислородной меди OFC относят следующие:

  • в вакууме, при накаливании она не ломается и не становится хрупкой;
  • способна легко изменять формы при холодной деформации (при воздействии на нее давлением в условиях комнатных или близких к ним температур);
  • при нахождении в различных условиях не меняет своего цвета;
  • среднее электрическое сопротивление такого металла постоянно;
  • удельная электропроводность всегда имеет высокие показатели;
  • металл этот однороден в своей структуре;
  • свободно обрабатывается высокотемпературной пайкой и сваркой.

Области применения

Вследствие своих качеств и свойств бескислородная медь нашла применение в разнообразных изделиях, а именно:

  • из нее изготавливают обмотки трансформаторов;
  • применяют в производстве коаксиальных кабелей;
  • используют в электронных системах и устройствах;
  • незаменимый металл в сверхпроводниках и линейных ускорителях;
  • она — важный структурный элемент телекоммуникационных проводов и кабелей, предназначенных для эксплуатации под водой;
  • является частью проводок токовых трансформаторов.

Также применяется бескислородная медь в вакуумной технике. Она незаменима при конструировании вакуумных распределительных систем и полупроводников.

Широко используется она при изготовлении изделий для космической отрасли.

Среди иных областей, где используют медь бескислородную, числятся: радиоэлектроника, микроэлектроника, радио- и приборостроение, атомная энергетика, ювелирная и строительная промышленности.

Читайте также:  Железа вырабатывающая гормон тироксин как называется

Из нее изготавливают провода и трубы, предназначенные для работы в сильных электромагнитных полях. Бескислородная медь является основой для изготовления электрохимических анодов.

Кабели из катодной меди: применение

Современная кабельная продукция, сделанная с использованием бескислородной меди, отличается повышенной проводимостью. Это дает возможность осуществлять высокую пропускную способность электрических сигналов при меньших сечениях проводов.

Однако стоит отметить, что широкого использования кабели из бескислородной меди не нашли. А все потому, что провода из этого металла отличаются высокой стоимостью. Для достижения нужных параметров используют простые медные с большим диаметром, предпочитая не тратиться на дорогие изделия из бескислородной меди.

Но есть и области, в которых предпочтение отдается высокой проводимости в сочетании с небольшим диаметром проводов. Это необходимо для обеспечения в том числе эстетичного вида. К таким сферам относятся производство музыкального оборудования, качественных наушников, а также те, где надо получить устройства, воспроизводящие высококачественные звуки профессионального уровня.

При применении такой меди отмечаются ее достоинства в противостоянии внутренней коррозии. Благодаря этому свойству провода из бескислородной меди со временем характеристик своих не теряют. По этой причине кабели с начинкой из этого металла используют в условиях, где присутствует высокая влажность.

Источник

В России появилось производство бескислородной меди

  • Что это значит? Медь высокой чистоты используется в металлообрабатывающей и медицинской промышленности.

Во Владикавказе начали выпускать бескислородную вакуумно-плавленую медь. Это единственное в нашей стране производство подобного рода. Оно организовано на заводе «Кристалл».

Полноценное производство кристально чистой меди на предприятии начнётся в мае. Сейчас в цеху работает одна печь, на площадке изготавливают до трёх заготовок в смену, что эквивалентно полутора тоннам конечной продукции. К концу текущего года будут введены в эксплуатацию ещё пять печей, что позволит нарастить объёмы производства до 1200 тонн в год.

Ранее бескислородная вакуумно-плавленая медь импортировалась в Россию из Германии и Финляндии. Такая медь, обладающая высокой прочностью, электропроводностью, большой устойчивостью к коррозии и другими характеристиками, особенно востребована на внутреннем рынке. Она широко применяется в электронной промышленности и на предприятиях ВПК.

Представители завода отдельно подчёркивают, что производство экологически чистое: на объекте установлены вакуумные бескислородные печи, которые не совершают выбросов ни в воду, ни в воздух. Что касается сырья, то его поставляют УГМК и «Норникель». На «Кристалл» медь поступает в катоде.

Компания «Кристалл» была основана в 1963 году. В советское время предприятие производило продукцию из вакуумплавленных цветных металлов, сплавов высокой частоты и полуфабрикатов.

Источник

Бескислородная медь: особенности, преимущества, применение

Библиотека Статьи Безопасный блог


Компания Hitachi, в 1984 году выпустила новую модификацию межблочного кабеля SAX-102. При его производстве была использована технология Oxygen Free Copper (OFC) использующая бескислородную медь. После этого многие компании начали развивать данную технологию, стараясь получить максимально чистый материал, который можно использовать в различных производственных процессах. Чем интересен данный материал?

Историческая справка, характеристика меди

Медь относится к отряду основных химических элементов. В естественном (чистом) виде это металл с красно-оранжевым оттенком. Его используют для изготовления очень большого ряда изделий, к которым относятся провода электрические, посуда, трубы, радиаторы автомобилей и т. п.

Информация археологов говорит о том, что медь начали использовать более десяти тысяч лет назад. Так медный кулон, обнаруженный в северных районах современного Ирака, был изготовлен около 8700 года до нашей эры.

Медь обладает высокими показателями тепловой и электрической проводимости, легко обрабатывается как горячим, так и холодным способом. У нее очень высокая коррозийная стойкость. Это обусловлено тем, что медь создает на своей поверхности очень тонкий оксидный защитный слой в результате реакции ее с кислородом.

Медь нашла широкое применение в производстве акустических, электрических и иных проводов, присутствуя там как металл высокой чистоты либо с небольшими добавлениями серебра, мышьяка, фосфора, теллура, серы.

Процесс получения

Высокоочищенную бескислородную медь получают в процессе так называемого электрического рафинирования. Она оседает на катодах электрических ячеек, вследствие чего имеет и иное название — медь катодная. Чистота достигает порядка 99.99 %. Такой металл называют и медью бескислородной, у которой высокая степень очистки (OFC – Oxygen-Free Copper).

Расплавленная чистая медь впоследствии разливается в специальные формы, которые имеют квадратные либо прямоугольные сечения. Этот процесс происходит в вакууме, при отсутствии кислорода, что предотвращает его проникновение в расплавленный металл. Отсутствие примесей кислорода в такой меди существенно увеличивает показатели ее электропроводности и прочности.

Развитие технологии производства бескислородной меди

Металл, проводящий электрический ток, состоит из гранул, которые имеют кристаллическую структуру. В местах переходов, возникают нарушения структуры. Это происходит из-за наличия в металле примесей. Окислы являются наиболее часто «преградой» для прохождения электрического тока. Поэтому, чем меньше кислорода, тем меньше окислов. Стандартная медь имеет 5000 гранул окислов на 1 метр кабеля.

Читайте также:  Как аарон стал титаном

Развитие технологии бескислородной меди можно разделить на три стадии

  • Технология OFC и её разновидности
  • ОСС – метод профессора Оно
  • Получение проводников на основе композитных материалов

Чистота

Бескислородная медь OFC имеет разные степени очистки. Чистота металла обозначается следующим образом: «* N». На месте звездочки (*) вставляют цифру, которая раскрывает информацию о количествах девяток после запятой. Так, марка бескислородной меди OFC 6N сообщает о том, что чистого металла в ней 99,999999 %. Количество посторонних примесей составляет 0,000001 %.

Первое производство меди качества 6N было осуществлено в 1985 году в Японии, компанией Nippon Mining Co. В массовое производство высоко очищенная бескислородная медь пошла в 1987 году. Основными сферами применения тогда стали акустические провода, межблочные сетевые кабеля.

В настоящее время такую чистую медь производят достаточно много производителей в мире, в том числе и в Российской Федерации.

Отдельными компаниями заявляется, что они достигли степень очистки выше показателя 6 -7N, 8N и т. д. Но при этом следует учитывать, что в настоящее время единства при определении стандартов чистоты бескислородной меди и ее качества нет. В некоторых случаях наличие каких-либо примесей просто не учитывается. Обычно к таким инородным включениям относится серебро.

Охлаждение фотокатода из монокристалла меди сделало его излучение вчетверо ярче


Howard Padmore et al. / Physical Review Letters, 2020
Американские физики создали фотокатод из монокристалла меди, яркость излучения которого в четыре раза превышает существующие аналоги. Для этого его охладили до температуры в 35 кельвин и облучали фотонам с длинами волн, близкими к порогу фотоэмиссии. Кроме того, ширина спектра излучения поверхности оказалось равной всего 11,5 миллиэлектронвольт, что на порядок меньше предыдущих результатов. Статья опубликована в Physical Review Letters

Один из способов получения электронных пучков — фотоэмиссия — активно используется для лазеров на свободных электронах, сверхбыстрой электронной дифракции и микроскопии. Фотоэмиссия — процесс выбивания фотонами электронов с поверхности фотокатода. Такие электроны называются фотоэлектронами, их энергия определяется разностью энергии падающих фотонов и работой выхода катода E = ℏω — W. Если энергия фотона так мала, что эта разность стремится к нулю, то такой режим называется порогом фотоэмиссии.

Для активного использования подобных источников электронов в исследованиях необходимо, чтобы излучаемые ими пучки электронов были яркими — яркость источника показывает, насколько направленно вылетают электроны с поверхности источника. Если, к примеру, есть два источника, и один излучает сто электронов за секунду, которые разлетаются в разные стороны, а из второго те же сто электронов в секунду летят вдоль одной прямой, то яркость второго будет больше. Если ученым удастся научиться делать фотокатоды с высокой яркостью электронных пучков, то появится возможность изучать решетки кристаллов больших размеров и можно будет получать больше информации об их электронной структуре. Яркость пучка фотокатода обратно пропорциональна площади, с которой вылетают электроны, и средней энергии в поперечном сечении (МТЕ). Эта энергия эквивалентна температуре излученных фотоэлектронов, поэтому снижение температуры фотокатода приводит к увеличению яркости источника. Еще одной важной характеристикой фотокатодов является разброс электронов по энергиям. Чем он меньше, тем проще исследовать, например, очень быстрые колебания решетки.

У источников, которые используются (, ) сейчас, МТЕ составляет несколько сотен миллиэлектронвольт и в грубом приближении считается равной трети энергии электронов. На пороге генерации фотоэлектронов можно наблюдать более низкие значения МТЕ за счет того, что излучение происходит из «хвоста» распределения Ферми и МТЕ можно ограничить произведением постоянной Больцмана на температуру. В таком режиме при комнатной температура МТЕ не превышает 25 миллиэлектронвольт.

В 2015 году физики из Корнеллского университета показали, что при охлаждении фотокатодов до 90 кельвин на границе фотоэмиссии можно добиться значения МТЕ в 20 миллиэлектронвольт, в то время как теоретические расчеты предсказывали 7,5 миллиэлектронвольт при такой температуре. Дело в том, что поверхность катода неидеальна, она может быть шероховатой или неоднородной, а работа выхода электронов может колебаться во времени. Поэтому очень важно делать катоды из монокристаллов с упорядоченной атомарной структурой. Такие кристаллы еще удобны тем, что их значительно легче моделировать. Достаточно использовать простую модель, которая учитывает переход электронов из кристалла в вакуум и отлично согласуется с экспериментальными данными.

(a) Измеренные и рассчитанные значения МТЕ для различных энергий фотонов; (b) Распределение электронов по энергиям для различных энергий фотонов; (c) Распределение электронов по энергиям для энергии фотона 4,43 электронвольт.

Читайте также:  Выберите те металлы которые при комнатной температуре реагируют с водой со значительной скоростью

Howard Padmore et al. / Physical Review Letters, 2020

В новой работе американские физики под руководством Говарда Падморе (Howard Padmore) из Национальной лаборатории имени Лоуренса в Беркли при участии одного из авторов работы 2015 года использовали фотокатод из монокристалла меди Cu(100). Образец подготавливали ионным бомбардированием и отжигом в несколько циклов. Затем, на него направляли лазер слабой интенсивности, чтобы в каждом импульсе было не больше одного фотона. Вылетевшие с поверхности фотокатода электроны попадали в ускоряющее электрическое поле и направлялись на детектор. Исследователи измеряли время полета электронов и их отклонение от первоначальной траектории — этих данных достаточно, чтобы рассчитать МТЕ.

Наименьшее полученное значение МТЕ составило 5 миллиэлектронвольт при энергии фотонов 4,43 электронвольт. При это же энергии фотонов наблюдалось самое узкое распределение электронов по энергиям — меньше 11,5 миллиэлектронвольт.

Различные способы выращивания монокристаллов открывают большие возможности для исследований. Ранее корейские химики разработали технологию выращивания плоских металлических монокристаллов площадью до 32 квадратных сантиметров. Для этого был использован метод бесконтактного отжига в атмосфере водорода при температуре, близкой к температуре плавления металла.
Оксана Борзенкова

Достоинства металла

К преимуществам бескислородной меди OFC относят следующие:

  • в вакууме, при накаливании она не ломается и не становится хрупкой;
  • способна легко изменять формы при холодной деформации (при воздействии на нее давлением в условиях комнатных или близких к ним температур);
  • при нахождении в различных условиях не меняет своего цвета;
  • среднее электрическое сопротивление такого металла постоянно;
  • удельная электропроводность всегда имеет высокие показатели;
  • металл этот однороден в своей структуре;
  • свободно обрабатывается высокотемпературной пайкой и сваркой.

Области применения

Вследствие своих качеств и свойств бескислородная медь нашла применение в разнообразных изделиях, а именно:

  • из нее изготавливают обмотки трансформаторов;
  • применяют в производстве коаксиальных кабелей;
  • используют в электронных системах и устройствах;
  • незаменимый металл в сверхпроводниках и линейных ускорителях;
  • она — важный структурный элемент телекоммуникационных проводов и кабелей, предназначенных для эксплуатации под водой;
  • является частью проводок токовых трансформаторов.

Также применяется бескислородная медь в вакуумной технике. Она незаменима при конструировании вакуумных распределительных систем и полупроводников.

Широко используется она при изготовлении изделий для космической отрасли.

Среди иных областей, где используют медь бескислородную, числятся: радиоэлектроника, микроэлектроника, радио- и приборостроение, атомная энергетика, ювелирная и строительная промышленности.

Из нее изготавливают провода и трубы, предназначенные для работы в сильных электромагнитных полях. Бескислородная медь является основой для изготовления электрохимических анодов.

Кабели из катодной меди: применение

Современная кабельная продукция, сделанная с использованием бескислородной меди, отличается повышенной проводимостью. Это дает возможность осуществлять высокую пропускную способность электрических сигналов при меньших сечениях проводов.

Однако стоит отметить, что широкого использования кабели из бескислородной меди не нашли. А все потому, что провода из этого металла отличаются высокой стоимостью. Для достижения нужных параметров используют простые медные с большим диаметром, предпочитая не тратиться на дорогие изделия из бескислородной меди.

Но есть и области, в которых предпочтение отдается высокой проводимости в сочетании с небольшим диаметром проводов. Это необходимо для обеспечения в том числе эстетичного вида. К таким сферам относятся производство музыкального оборудования, качественных наушников, а также те, где надо получить устройства, воспроизводящие высококачественные звуки профессионального уровня.

При применении такой меди отмечаются ее достоинства в противостоянии внутренней коррозии. Благодаря этому свойству провода из бескислородной меди со временем характеристик своих не теряют. По этой причине кабели с начинкой из этого металла используют в условиях, где присутствует высокая влажность.

Преимущества кабеля произведенного по технологии OFC

Улучшенная проводимость

Кабель, изготовленный по данной технологии, имеет более высокую проводимость, по сравнению с классическим кабелем на всех частотах. Это значительно сокращает все виды потерь, при прохождении тока по проводнику. Стоит отметить, что стоимость кабеля по технологии OFC, значительно выше, чем обычного кабеля. Поэтому, при решении стандартных задач, проще и дешевле поставить стандартный кабель, но большего диаметра.

Постоянность характеристик

В отличие от кабеля, который произведен по обычной технологии, жилы, изготовленные по OFC, не подвержены внутренней коррозии. Поэтому, в процессе эксплуатации, их технические характеристики остаются неизменными. Это очень важно, если кабель используется при повышенной влажности, в музыкальном оборудовании, а также в местах, куда, после монтажа, трудно добраться.

Широкий ассортимент продукции

Стоимость кабеля из бескислородной меди на данный момент не так уж высока. Поэтому выпускается широкий ассортимент кабеля, что позволяет точно подобрать его под определенную задачу, и свести к минимуму неоправданные затраты.

Источник

Поделиться с друзьями
Металл и камни