Как одноклеточные организмы стали многоклеточными

Из одноклеточных в многоклеточные: ученые продемонстрировали эволюцию в реальном времени

Исследовательская группа профессора Лутца Бекса из Констанцского университета в Германии попыталась объяснить, как одноклеточные организмы становятся многоклеточными. В сотрудничестве с коллегами из Института полярных и морских исследований им. Альфреда Вегенера они смогли продемонстрировать, что одноклеточные зеленые водоросли Chlamydomonas reinhardtii (Хламидомонада Рейнгардта) за 500 поколений развивают мутации, которые являются первым шагом к многоклеточному организму.

Согласно теории гастреи, предложенной немецким ученым Эрнстом Геккелем в 1866 году, первичный многоклеточный организм мог возникнуть в процессе деления клетки, на первом этапе которого образовались колонии дочерних клеток. Далее в скоплениях таких клеток появились анатомические и функциональные различия, которые привели к дальнейшей специализации. Таким образом мог образоваться многоклеточный организм с разделением функций клеток: одни клетки отвечали за движение, другие за питание и пищеварение.

В соответствии с этой теорией, эволюция групп клеток и последующие шаги к многоклеточности могут происходить только тогда, когда группы клеток лучше воспроизводятся и с большей вероятностью выживают, чем отдельные клетки. Профессор Лутц Бекс и его команда экспериментально проверили условия, которые вызывают переход от одноклеточности к образованию колоний.

Хламидомонада Рейнгардта принадлежит к группе водорослей, которые происходят от одноклеточного предка и проходят через разные стадии эволюционной многоклеточности. Исследователи наблюдали за эволюцией колоний в эксперименте в реальном времени. Они вырастили десять различных клеточных линий водоросли. К некоторым образцам ученые в качестве внешнего фактора естественного отбора добавили животных коловраток, поедающих водоросли. Как подчеркивают исследователи, коловратка легко поедает отдельные клетки, но в колонии клетки выживут с более высокой вероятностью, так как животным труднее поедать колонии целиком.

Анализ клеток после 500 поколений показал, что колонии за это время не только начали мутировать в многоклеточные организмы; более того, колонии с коловратками росли лучше и имели значительно более высокую скорость воспроизводства, чем колонии, растущие без коловраток. Это не только подтвердило основную теорию, но и показало, что эволюционный этап произошел очень быстро: на формирование необходимых 500 поколений ушло около полугода.

Ученые также отметили, что мутации клеток также воспроизводились на уровне генома.

«Мы ожидали, что образования колоний можно добиться с помощью различных механизмов, и мы обнаружим разные мутации. Однако в ходе эксперимента мы наблюдали очень высокий уровень повторяемости одних и тех же мутаций. Это говорит о том, что давление естественного отбора оказывалось очень сильным и имело очень целенаправленный эффект», — говорит Бекс.

Источник

Многоклеточные организмы создал. голод

Американские ученые открыли молекулярный механизм, который, возможно, когда-то давным-давно (около двух миллиардов лет назад) помог одноклеточным животным стать многоклеточными. Были также выяснены причины, побудившие их совершить столь сложное превращение. Согласно проведенным исследованиям, одноклеточных заставила собраться вместе угроза голода.

До сих пор проблема возникновения многоклеточных организмов из их одноклеточных предшественников является одной из самых интригующих загадок ранней истории жизни на нашей планете. Как мы помним, первые одноклеточные живые организмы известны из отложений, возраст которых 3,9 миллиарда лет (в Гренландии). После чего они спокойно существуют на Земле около двух миллиардов лет, не делая никаких попыток к объединению в многоклеточное существо, и лишь 2,1-1,8 миллиарда лет назад таковые все-таки появляются. Что же заставило наших одноклеточных предков изменить своим привычкам и создать принципиально другой тип организма?

Собственно говоря, древние экосистемы Земли не нуждались в многоклеточных существах. Одноклеточные вполне эффективно поддерживали стабильность круговоротов всех жизненно необходимых веществ, вроде азота, углерода и фосфора. А, как мы помним, именно стабильность этих круговоротов и обеспечивает устойчивость экосистем. Если же экосистемы устойчивы, то и никакая эволюция составляющим ее организмам в принципе не нужна — зачем изобретать что-то новое, когда и так хорошо живется?

Читайте также:  Что серебра не ломит ребра

Однако на самом деле все, видимо, было не столь безоблачно. Малоразмерные одноклеточные организмы сталкиваются с одной проблемой (на которую впервые обратил внимание отечественный гидробиолог Б. В. Виленкин) — снабжение их биогенными веществами и пищей происходит исключительно за счет диффузии сквозь клеточную оболочку. Это, казалось бы, должно благоприятствовать миниатюризации клеток для того, чтобы максимально увеличить отношение ее поверхности к объему, а не укрупнению организма. Но…

Как показали эксперименты и наблюдения, очень мелкий организм, пассивно паря в толще воды, быстро создает вокруг себя «пустыню» — выедает из непосредственно окружающего его водного слоя все необходимые ему вещества. Кроме того, он еще ударно загрязняет эту «пустыню» своими отходами. На их разложение расходуется весь находящийся рядом кислород, и в итоге данный организм сам себя душит. А далеко уплыть от созданной им самим же «пустыни» он не в состоянии: у него просто не хватает энергии на такое путешествие (он ведь маленький — следовательно, много запасов пищи в него просто не влезет).

Именно «проблема Виленкина» и побудила древних одноклеточных объединяться. Однако какой из факторов был решающим: голод, загрязнение окружающей среды или удушье? И каким именно способом шло формирование многоклеточных организмов? Эти вопросы долго не имели ответов, однако недавно американские биологи смогли вплотную приблизиться к разгадке данной тайны эволюции.

Группа ученых под руководством Дэниэла Дикинсона из Стэнфордского университета (США) исследовали процесс формирования плодового тела у слизевиков Dictyostelium discoideum. Как известно, эти грибоподобные организмы предпочитают существовать в виде отдельных амебовидных клеток. Однако когда этому странному существу не хватает еды, множество отдельных клеток объединяются, чтобы образовать споры и отправить их на поиски более пригодного места обитания.

При этом теперь уже многоклеточный организм формирует вытянутую «ножку», или «стебелек», которая и образует споры. Ну, а сам «стебелек» строится из особой группы клеток, которые, как считали, несут ответственность за образование плодового тела. То есть перед нами в данном случае не классический многоклеточный организм, состоящий из разных тканей, а все-таки очень сложная колония, которую составляют клетки, чьи функции различаются. Однако, как предполагают ученые, именно такая колония и была первым шагом на пути создания настоящей многоклеточности.

Молекулярная структура клеток «стебелька» долгое время оставалась невыясненной. Однако Дикинсону и его коллегам удалось найти в этих клетках плодового тела слизевика два белка, очень похожих на катенины. Напомню, что данные белки играют значительную роль в поляризации клеток у животных. Следует заметить, что поляризация (то есть процесс, при котором у клеток появляются молекулярно-морфологические «перед» и «зад» или «верх» и «низ») является главным процессом в развитии организма и именно с нее начинается образование всякой ткани или органа.

Биологи обнаружили, что у клеток верхушки плодового тела определенные органеллы собраны на одном краю. Это весьма напоминает строение эпителиальной ткани у животных. Далее исследователи выключали два белка — Ddα-катенин и белок Aardvark (второй из белков слизевика, сходных с катенинами) — с помощью различных биохимических методик. В результате слизевик оказался не в состоянии формировать спороносное плодовое тело, а клетки «стебелька» перестали быть поляризованными. Также выяснилось, что клетки с выключенными белками оказались неспособными выделять целлюлозу и прочие экспортные вещества, на которых и можно было «строить» спороносную ножку.

Читайте также:  Как понять что вытекла ртуть с градусника

Получается, что именно катенины помогают слизевику Dictyostelium discoideum сформировать многоклеточный организм из ряда амебовидных клеток. Однако давно известно, что эти белки очень древние — их аналоги имеются у многих одноклеточных организмов. Правда, нигде, кроме как у исследованного слизевика, их деятельность не стимулирует образование колоний.

Исследование образования колоний у слизевика позволяет построить эволюционную модель возникновения многоклеточности. По всей видимости, именно голод заставил одноклеточных объединяться в колонии, которым легче было накопить запасы энергии (в виде пищи, разумеется), необходимые для «дальних странствий». При этом деятельность катениноподобных белков, вызывающая поляризацию клеток, создала специализированные структуры (вроде ножки тех же самых слизевиков), которые помогали всему этому сообществу держаться вместе и не распадаться.

Такие колонии уже могли успешно конкурировать с одноклеточными организмами, поскольку контролировали большую территорию, чем одиночные организмы. Однако сначала эти образования, судя по всему, были временными (как и у вышеупомянутого Dictyostelium discoideum). И все потому, что свободного кислорода на Земле тогда было маловато — меньше одного процента от современной концентрации. При такой концентрации этого полезного газа существование многоклеточных организмов невозможно по чисто физиологическим причинам — диффузионный способ поглощения кислорода не позволяет равномерно распределять его между всеми клетками колонии.

Однако, примерно 1,5 миллиарда лет назад, благодаря деятельности фотосинтетических организмов этот рубеж, называемый точкой Пастера, оказался пройден — концентрация кислорода составила тот самый один процент от нынешнего. В результате колонии стали более-менее постоянными, а дифференцировка клеток, которая стала возможной благодаря наличию катенинов, превратила их в настоящие организмы, состоящие из тканей. С тех пор именно многоклеточные стали доминировать в экосистемах Земли (чем они, собственно говоря, и по сей день занимаются). А одноклеточным пришлось довольствоваться теми нишами, которые не привлекали многоклеточных.

Недавнее исследование американцев подтвердило один из важнейших эволюционных законов — все основные преобразования живых существ осуществляются на базе уже существующих систем, которые при изменении условий просто начинают функционировать несколько по-новому. Так и для образования многоклеточного тела организмам вовсе не нужно было изобретать что-то новое, а следовало лишь применить имеющийся арсенал средств (в виде катенинов). И, судя по тому, что мы с вами состоим из множества разнообразных клеток, тогда, два миллиарда лет назад, они сделали это весьма успешно…

Присоединяйтесь к телеграм-каналу Правды.Ру с возможностью высказать ваше собственное мнение)

Источник

Переход к многоклеточной жизни был относительно простым

Миллиарды лет назад жизнь вышла на новый уровень. Отдельные клетки стали объединяться и формировать сложные организмы. В результате жизнь породила бесконечное разнообразие форм, от растений и насекомых до людей. Однако ученые до сих пор точно не знают, как именно происходил переход к многоклеточности.

Переход от одноклеточных организмов к многоклеточным кажется непреодолимой пропастью. Бактерии, простейшие и другие одноклеточные прекрасно существуют на своем уровне развития и не нуждаются в объединении с себе подобными. Хотя многоклеточность и сулит блестящие эволюционные перспективы, естественный отбор не способен заглядывать в будущее.

Однако, возможно, переход к многоклеточности был проще, чем мы думаем, отмечает Science Mag. У биологов есть несколько аргументов в пользу этой точки зрения. Во-первых, некоторые группы живых организмов неоднократно становились многоклеточными. Во-вторых, у одноклеточных есть все механизмы, необходимые для объединения, дифференцировки и управления клетками. И, наконец, эксперименты показывают, что на формирование многоклеточности нужно не так уж много времени — всего несколько сотен поколений.

Ученые не могут назвать точную дату появления многоклеточных организмов. Первые намеки на нее появляются в палеонтологической летописи 3 миллиарда лет назад. Однако исследователям известно, что животные и высшие растения переходили к многоклеточности лишь один раз за свою историю.

Первые сделали это не позднее 570, а вторые — не позднее 470 млн лет назад. В отличие от них, грибы независимо становились многоклеточными примерно 12 раз. Это же касается и водорослей.

Читайте также:  Как варить алюминий тигом правильно

В изучении перехода к многоклеточности ученым помогает группа простейших, известных как хоанофлагеллаты. Эти микроскопические создания, дальние родственники животных, снабжены жгутиком и воронтичком и иногда формируют сферические колонии. Анализируя геном хоанофлагеллат, исследователи приходят к выводу, что переход к многоклеточности не был сложным процессом.

В ДНК простейших обнаружился целый набор генов, характерных для сложных животных и, казалось бы, ненужных одноклеточным. Среди них — регуляторы роста и дифференциации клеток, а также гены, кодирующие производство клеточного «клея». Недавнее исследование 21 вида хоанофлагеллат выявило 350 генов, которые, как считалось ранее, характерны лишь для многоклеточных. Если эти создания действительно предки животных, то они были отлично экипированы для дальнейшей эволюции.

Ученые предполагают, что в организмах простейших эти гены выполняют совершенно иные функции. Когда древние одноклеточные начали переход к многоклеточности, им пришлось использовать старые гены для новых целей, а также по-новому использовать существующие механизмы работы.

Однако некоторых генов, необходимых для многоклеточной жизни, современным простейшим не хватает. Речь идет о факторах транскрипции, которые тонко регулируют работу генов. У простейших они есть, но у животных эти гены работают намного точнее и эффективнее. Возможно, именно здесь кроется секрет, без которого настоящая многоклеточность невозможна. Именно эволюция регуляторных участков позволила нашим предкам перераспределить функции существующих генов.

Эта гипотеза была проверена на дрожжах. Культуру этих одноклеточных грибов подвергли своеобразной форме искусственного отбора, оставляя для размножения только самые крупные клетки. В течение двух месяцев дрожжи начали формировать ветвящиеся многоклеточные кластеры. После 3000 поколений у дрожжей появились даже своего рода «половые клетки» — отделяющиеся фрагменты, которые давали начало новым колониям. Ученые только начали изучать генетическую основу этих изменений, но уже заметили, что дрожжи используют старые гены для новых целей.

Сходные результаты дал эксперимент с одноклеточными водорослями Chlamydomonas. Отбирая самые крупные клетки, ученые добились появления многоклеточных колоний в течение 750 поколений — около двух лет. Любопытно, что в данном случае отбор был естественным: мелкие клетки отбраковывали не исследователи, а питающиеся ими инфузории.

Однако остается один вопрос. Если многоклеточность может возникнуть относительно легко, почему между появлением первых живых организмов и первых многоклеточных прошло несколько миллиардов лет? Традиционный ответ гласит, то сложные организмы могли появиться лишь при высоких уровнях кислорода — условие, которое было выполнено около 1 млрд лет назад.

Новая гипотеза предполагает, что низкое содержание кислорода, напротив, благоприятствовало эволюции многоклеточных организмов. Многоклеточные с большей поверхностью мембраны эффективнее поглощали кислород и питательные вещества, что обеспечило им эволюционное преимущество. А долгое формирование многоклеточности авторы гипотезы связывают с тем, что на формирование нужных регуляторных генов необходимо много времени.

Однажды став многоклеточными, организмы редко возвращаются к первоначальному состоянию. Число разных тканей и клеток в их организмах растет, а с ними увеличивается сложность регуляторных механизмов. В результате возникает эффект храповика: чем сложнее организм, тем труднее его специализированным клеткам вернуться к одиночному образу жизни. Недавно эта гипотеза была подтверждена математически.

Исследования эволюции порой преподносят биологом сюрпризы. Например, анализ генетических данных показал , что возраст большинства современных видов — 100-200 тысяч лет. Это говорит о том, что эволюционное развитие видов идет постоянно, даже если нам кажется, что они не меняются.

Источник

Поделиться с друзьями
Металл и камни