- Свойства меди: плотность, теплоемкость, теплопроводность
- Свойства меди Cu: теплопроводность и плотность меди
- Теплофизические свойства меди: КТР и удельная теплоемкость меди
- Теплопроводность металлов
- Что такое теплопроводность и для чего нужна
- Понятие термического сопротивления и коэффициента теплопроводности
- От чего зависит показатель теплопроводности
- Методы измерения
- Теплопроводность стали, меди, алюминия, никеля и их сплавов
- Применение
- Тепловые свойства меди
- Теплопроводность меди – две стороны одной медали
- 1 Медь – коротко про теплопроводность
- 2 Теплопроводность алюминия и меди – какой металл лучше?
- 3 Минусы высокой теплопроводности
- 4 Как у меди повысить теплопроводность?
Свойства меди: плотность, теплоемкость, теплопроводность
Свойства меди Cu: теплопроводность и плотность меди
В таблице представлены теплофизические свойства меди в зависимости от температуры в интервале от 50 до 1600 градусов Кельвина.
Плотность меди равна 8933 кг/м 3 (или 8,93 г/см 3 ) при комнатной температуре. Медь почти в четыре раза тяжелее алюминия и железа. Эти металлы будут плавать на поверхности жидкой меди. Значения плотности меди в таблице указаны в размерности кг/м 3 .
Зависимость плотности меди от ее температуры представлена в таблице. Следует отметить, что плотность меди при ее нагревании снижается как у твердого металла, так и у жидкой меди. Уменьшение значения плотности этого металла обусловлено его расширением при нагревании — объем меди увеличивается. Следует отметить, что жидкая медь имеет плотность около 8000 кг/м 3 при температурах до 1300°С.
Теплопроводность меди равна 401 Вт/(м·град) при комнатной температуре, что является довольно высоким значением среди металлов, которое сравнимо с теплопроводностью серебра.
При 1357К (1084°С) медь переходит в жидкое состояние, что отражено в таблице резким падением значения коэффициента теплопроводности меди. Видно, что теплопроводность жидкой меди почти в два раза ниже, чем у твердого металла.
Теплопроводность меди при ее нагреве имеет тенденцию к снижению, однако при температуре выше 1400 К, значение теплопроводности снова начинает увеличиваться.
В таблице рассмотрены следующие теплофизические свойства меди при различных температурах:
- плотность меди, кг/м 3 ;
- удельная теплоемкость, Дж/(кг·град);
- температуропроводность, м 2 /с;
- теплопроводность меди, Вт/(м·К);
- удельное электрическое сопротивление, Ом·м;
- функция Лоренца;
- отношение теплоемкостей.
Теплофизические свойства меди: КТР и удельная теплоемкость меди
Медь имеет сравнительно высокие теплоты плавления и кипения: удельная теплота плавления меди 213 кДж/кг; удельная теплота кипения меди 4800 кДж/кг.
В таблице ниже представлены некоторые теплофизические свойства меди в зависимости от температуры в интервале от 83 до 1473К. Значения свойств меди указаны при нормальном атмосферном давлении. Следует отметить, что удельная теплоемкость меди равна 381 Дж/(кг·град) при комнатной температуре, а теплопроводность меди равна 395 Вт/(м·град) при температуре 20°С.
Из значений коэффициента температурного расширения и теплоемкости меди в таблице видно, что нагрев этого металла приводит к росту этих величин. Например, теплоемкость меди при температуре 900°С становится равной 482 Дж/(кг·град).
В таблице даны следующие теплофизические свойства меди:
- плотность меди, кг/м 3 ;
- удельная теплоемкость меди, кДж/(кг·К);
- коэффициент теплопроводности меди, Вт/(м·град);
- удельное электрическое сопротивление, Ом·м;
- линейный коэффициент теплового расширения (КТР), 1/град.
Источники:
1. В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах.
2. Чиркин В.С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1967 — 474 с.
Источник
Теплопроводность металлов
Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.
Что такое теплопроводность и для чего нужна
Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.
Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.
Понятие термического сопротивления и коэффициента теплопроводности
Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.
Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.
Коэффициент теплопроводности металлов при температура, °С
От чего зависит показатель теплопроводности
Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:
- вида металла;
- химического состава;
- пористости;
- размеров.
Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.
Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.
Методы измерения
Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.
Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.
Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.
Теплопроводность стали, меди, алюминия, никеля и их сплавов
Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.
Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.
Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.
Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.
Применение
Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.
Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:
- кухонная посуда с различными свойствами;
- оборудование для пайки труб;
- утюги;
- подшипники качения и скольжения;
- сантехническое оборудование для подогрева воды;
- приборы отопления.
Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.
При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.
Источник
Тепловые свойства меди
Характерной особенностью меди является ее высокая теплопроводность, в 6 раз большая, чем у железа, и более высокая, чем у железа, механическая стойкость при низких температурах.
Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса алюминия, железа, кислорода, мышьяка, сурьмы, серы, селеа, фосфора.
Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена, особенно труб, листовой меди и медной проволоки. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.
Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.
Тепловое расширение меди (при 20 — 100 град. C) — 0,0168 мм / м / ºC.
Чистая медь и ее сплавы не являются жаростойкими материалами, однако, в некоторых случаях они применяются при повышенных температурах, когда от конструкции требуется повышенная электропроводность или теплопроводность. Используется медь с низким содержанием кислорода (
Принятые значения термодинамических величин для меди и ее соединений в кристаллической и жидкой фазах.
Источник
Теплопроводность меди – две стороны одной медали
Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.
1 Медь – коротко про теплопроводность
Теплопроводностью называют процесс переноса энергии частиц (электронов, атомов, молекул) более нагретых участков тела к частицам менее нагретых его участков. Такой теплообмен приводит к выравниванию температуры. Вдоль тела переносится только энергия, вещество не перемещается. Характеристикой способности проводить тепло является коэффициент теплопроводности, численно равный количеству теплоты, которая проходит через материал площадью 1 м 2 , толщиной 1 м, за 1 секунду при единичном градиенте температуры.
Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:
Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.
Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.
2 Теплопроводность алюминия и меди – какой металл лучше?
Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.
Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:
- плотность (удельный вес) алюминия меньше в 3 раза;
- стоимость – ниже в 3,5 раза.
Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).
В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.
Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).
Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.
3 Минусы высокой теплопроводности
Низкая теплопроводность во многих случаях является нужным свойством – на этом основана теплоизоляция. Использование медных труб в системах отопления приводит к гораздо большим потерям тепла, чем при применении магистралей и разводок из других материалов. Медные трубопроводы требуют более тщательной теплоизоляции.
У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.
При газовой сварке меди необходимо использование горелок мощностью на 1–2 номера выше, чем для стальных деталей такой же толщины. Если медь толще 8–10 мм, рекомендуется работать с двумя или даже тремя горелками (часто сварку производят одной, а другими осуществляют подогрев). Сварочные работы на переменном токе электродами сопровождаются повышенным разбрызгиванием металла. Резак, достаточный для толщины высокохромистой стали в 300 мм, подойдет для резки латуни, бронзы (сплавы меди) толщиной до 150 мм, а чистой меди всего в 50 мм. Все работы связаны с значительно большими затратами на расходные материалы.
4 Как у меди повысить теплопроводность?
Медь – один из главных компонентов в электронике, используется во всех микросхемах. Она отводит и рассеивает тепло, образующееся при прохождении тока. Ограничение быстродействия компьютеров обусловлено увеличением нагрева процессора и других элементов схем при росте тактовой частоты. Разбиение на несколько ядер, работающих одновременно, и другие способы борьбы с перегревом себя исчерпали. В настоящее время ведутся разработки, направленные на получение проводников с более высокой электропроводимостью и теплопроводностью.
Открытый недавно учеными графен способен значительно увеличить теплопроводность медных проводников и их возможность к рассеиванию тепла. При проведении эксперимента слой меди покрыли графеном со всех сторон. Это улучшило теплоотдачу проводника на 25 %. Как объяснили ученые, новое вещество меняет структуру передачи тепла и позволяет энергии двигаться в металле свободнее. Изобретение находится на стадии доработки – при эксперименте использовался медный проводник гораздо больших размеров, чем в процессоре.
Источник