Как получить пероксиды металлов

Пероксиды щелочных металлов

Химические свойства

Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные , так и восстановительные свойства.

1. Пероксиды щелочных металлов взаимодействуют с водой . При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:

При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:

2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами .

Например , пероксид натрия реагирует с углекислым газом с образованием карбоната натрия и кислорода:

3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:

При нагревании пероксиды, опять-таки, диспропорционируют:

4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:

5. При взаимодействии с восстановителями пероксиды проявляют окислительные свойства.

Например , пероксид натрия с угарным газом реагирует с образованием карбоната натрия:

Пероксид натрия с сернистым газом также вступает в ОВР с образованием сульфата натрия:

6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.

Например , при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород:

Источник

ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ НЕОРГАНИЧЕСКИЕ

ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ НЕОРГАНИЧЕСКИЕ, содержат группировку из связанных между собой двух атомов О. Употребляют также назв. дикислородные соединения. Общее св-во большинства пероксидных соед. -способность сравнительно легко выделять кислород (при нагр., при действии воды или др. в-в), поэтому иногда говорят, что кислород в них присутствует в активной форме и наз. его активным кислородом.

Различают ионные и ковалентныепероксидные соединения. Дикислород-ная группировка может существовать в трех ионных формах, поэтому ионные пероксидные соединения подразделяют на три осн. группы: пероксиды с ионом ; супероксиды (гипероксиды) с ионом ; диоксигенильные соединения с ионом . К ионным пероксидным соединениям относят также озониды неорганические, гидропе-роксиды и соли пероксония, содержащие соотв. ионы , , . Среди ионных пероксидных соединений только пероксиды диамагнитны и не окрашены (или их окраска не связана с пероксид-ной группой), остальные парамагнитны и, как правило, ярко окрашены.

Ковалентные пероксидные соединения имеют общую ф-лу R—О—О—R’, где R и R’ — неорг. радикалы или атомы. К этой группе относят водорода пероксид, пероксокислоты, пероксосольваты, хлор-перокситрифторметан CF 3 OOCl, соед. с цепочкой из трех атомов О, напр. CF 3 OOOCF 3 , и др. Ионы и могут образовывать координац. связи с ионами переходных и непереходных элементов, соответствующие соед. входят в группу комплексных пероксидных соединений, близких по св-вам к ковалентным пероксидным соединениям. Диоксидифторид О 2 F 2 , соед. с цепочкой из трех атомов О (напр., CF 3 OOOCF 3 ) и нек-рые другие также можно отнести к пероксидным соединениям. К комплексным пероксидным соединениям следует отнести соед., обратимо отдающие кислород,-комплексы с мол. кислородом, важнейший из к-рых-оксигемоглобин. Энергия, длина и порядок связи О—О в молекуле пероксидных соединений, зависят от заряда на группе O 2 (табл. 1).

Табл. 1. ХАРАКТЕРИСТИКА СВЯЗИ О—О

Энергия связи, кДж/моль

Примеры пероксидных соединений -ионные пероксиды и гидропероксиды Na 2 O 2 , BaO 2 , NH 4 OOH; координац. пероксиды и гидропероксиды [Nb(O 2 )] 3— , [Ti(O 2 )F 5 ] 3— , [BF 3 OOH] — ; пероксокислоты и их соли H 2 CO 4 , KHSO 5 ; пероксосольваты Na 2 CO 3 ·1,5H 2 O 2 , СО(NH 2 ) 2 ·H 2 O 2 ; соли пероксония H 3 O 2 + AsF 6 — , H 3 O 2 + SbF 6 — ; ионные супероксиды NaO 2 , KO 2 , Са(О 2 ) 2 ; координац. супероксиды [Co(O 2 )(CN) 5 ] 3— , [ 2 (O 2 )] 5+ ; озониды KO 3 , RbO 3 , CsO 3 ; комплексы с мол. кислородом-соед. ф-лы А («салькомин»); соли диоксигенила O 2 BF 4 , O 2 PtF 6 .

Пероксиды. Пероксиды щелочных металлов М 2 О 2 -бесцв. кристаллы, решетка к-рых построена из ионов O 2 2— и M + (табл. 2). В водном р-ре полностью гидролизуют-ся до MOH и H 2 O 2 , в случае пероксидых соединений Li и Na гидролиз в значит. степени обратим; из водно-пероксидного р-ра кристаллизуются пероксосольваты, напр. Li 2 O 2 ·2H 2 O 2 , Na 2 O 2 ·2H 2 O 2 ·4H 2 O.

Читайте также:  Как изучать сварку металлов

Известны также K 2 O 2 ·nH 2 O 2 (n= 2,4). Состав сольватов определяется т-рой и концентрацией H 2 O 2 и щелочи в р-ре. M 2 O 2 реагируют с парами воды и с CO 2 , выделяя O 2 и образуя MOH и M 2 CO,- Активность M 2 O 2 в этой р-ции растет от Li 2 O 2 к Cs 2 O 2 . На этой р-ции основано применение Li 2 O 2 и Na 2 O 2 в качестве компонентов регенеративных в-в в дыхат. аппаратах изолирующего типа. M 2 O 2 -довольно активные окислители, мн. орг. в-ва (спирты, эфиры и др.) воспламеняются в контакте с ними.

Сингония (пространств. группа)

Пром. способом производят только натрия пероксид и немного Li 2 O 2 (Hs LiOH и H 2 O 2 в воде с послед. сушкой сольвата).

Пероксиды элементов II группы MO 2 образуют все щел.-зем. металлы. Бесцв. кристаллы, малогигроскопичны. Т-ра распада MO 2 растет от Mg к Ba, причем в случае соед. Ba и Sr р-ция MO 2 МО + l / 2 O 2 обратима; давление диссоциации p0,1 МПа для BaO 2 при 843 0 C, для SrO 2 при 365 0 C. MgO 2 и CaO 2 необратимо разлагаются при 330-430 0 C.

Пероксиды щел.-зем. металлов как твердые окислители и оксигенирующие агенты химически менее активны, чем пероксиды щелочных металлов, их реакц. способность проявляется при повыш. т-рах. В отсутствие влаги BaO 2 реагирует с N 2 O с образованием Ba (NO 2 ) 2 и N 2 при 500-600 0 C, с NO 2 , давая Ba(NO 3 ) 2 , при 120-140 0 C, с NH 3 выше 500 0 C. В присут. паров воды эти р-ции, а также поглощение CO 2 идут при более низкой т-ре. BaO 2 окисляет оксиды металлов при 230-430 0 C с образованием солей Ba или смешанных оксидов; напр., с Cr 2 O 3 дает BaCrO 4 , с MnO 5 Mn 3 O 4 и MnO 2 -BaMnO 4 .

Пероксиды щел.-зем. металлов устойчивы к действию воды, их гидролиз протекает медленно; из р-ров H 2 O 2 в воде или M (OH) 2 и H 2 O 2 в воде они кристаллизуются в виде кристаллогидратов и пероксосольватов состава MO 2 · 8H 2 O, MO 2 ·2H 2 O 2 и MO 2 ·H 2 O 2 . Октагидраты довольно устойчивы, теряют воду ок. 400 0 C без разложения. Пероксосольваты менее устойчивы, их термич. распад в вакууме протекает по двум параллельным направлениям-отщепление и разложение кристаллизационной H 2 O 2 и диспропорциони-рование по схеме 2(MO 2 ·2H 2 O 2 )M(О 2 ) 2 +M(OH) 2 +3H 2 O+1,5O 2 .

Макс. содержание M(О 2 ) 2 в смеси в случае Ba

30%, Ca до 60%, Mg ок. 1%.

Пероксиды щел.-зем. металлов получают р-цией их гид-роксидов с водной H 2 O 2 или взаимод. р-ра H 2 O 2 с р-рами солей в присут. NH 3 с послед. сушкой выпавшего сольвата. При получении MgO 2 из Mg(OH) 2 концентрация р-ра H 2 O 2 более 30%, после сушки препараты содержат не менее 0,5 моля H 2 O на моль MgO 2 . BaO 2 получают также р-цией BaO с O 2 воздуха при 330-530 0 C. BaO 2 , CaO 2 и небольшие кол-ва MgO 2 производят в пром. масштабе. BaO 2 (см. также Бария оксид) — компонент трассирующих составов, капсюлей-детонаторов и запалов замедленного действия, BB, термитных смесей, твердых источников O 2 , катализаторов полимеризации олефинов. CaO 2 применяют для очистки сточных вод, для отбеливания бумаги и пряжи, в хлебопечении для улучшения пластич. св-в теста, в качестве добавки к удобрениям для рисовых плантаций, в составе регенеративных в-в, для вулканизации полисульфидных каучуков и др. MgO 2 входит в состав антисептич. ср-в и отбеливающих композиций. Все пероксиды служат, кроме того, эффективными бактерицидными, спороцидными и деконтаминирую-щими ср-вами.

Пероксиды Zn и Cd имеют кремовую окраску, вызванную, по-видимому, примесью супероксидов. Получают их действием H 2 O 2 на оксид, гидроксид или водно-аммиачный р-р соли Zn или Cd, ZnO 2 -также р-цией Zn(NO 3 ) 2 с NaO 2 в жидком аммиаке. ZnO 2 -компонент мазей для лечения ран и ожогов, для предотвращения газовой гангрены; используется при вулканизации и полимеризации. Пероксид HgO 2 известен в двух модификациях — желтой a, взрывающей при нагр. и ударе, и более стабильной красно-оранжевой b .

Читайте также:  Сколько аллотропических модификаций имеет железо

Гидропероксиды -кислые соли H 2 O 2 ; малостабильны; присутствуют в щелочных водных р-рах H 2 O 2 . В кристаллич. состоянии надежно установлено существование только (т. пл. 22-23 0 C, при 45 0 C полностью разлагается на NH 3 , H 2 O и O 2 ). Вопрос о принадлежности др. соединений эмпирич. ф-лы MOOH, где M-щелочной металл или (Alk) 4 N + , к гидропероксидам или пероксосольватам M 2 O 2 ·H 2 O 2 не решен.

Супероксиды. Супероксиды щелочных металлов MO 2 -кристаллы (табл. 3), окрашены в разл. оттенки желтого цвета; термохроны — с ростом т-ры интенсивность окраски усиливается, а ниже 100 К окраска почти исчезает; полиморфны. NaO 2 и KO 2 немного раств. в жидком NH 3 , а в присут. краун-эфиров KO 2 хорошо раств. в ДМСО и др.

Сингония (пространств. группа)

Рентгеновская плотн., г/см 3

неводных средах. LiO 2 термически неустойчив, в индивидуальном виде не выделен; образуется при действии O 3 на суспензию Li 2 O 2 в хладоне 12 ниже 170 К или в аргоновой матрице при совместной конденсации паров Li и O 2 при 14 К. Остальные MO 2 при комнатной т-ре в отсутствие влаги и CO 2 вполне стабильны. Термич. распад MO 2 идет через промежут. образование M 2 O 2 и твердых р-ров MO 2 в M 2 O 2 , стадия 2MO 2 M 2 O 2 + O 2 обратима. При 157 0 C время полураспада 6 сут, при 252 0 C — ок. 1 ч, добавки V 2 O 5 заметно ускоряют распад. Скорость термич. распада NaO 2 зависит также от дефектности кристаллов. KO 2 , RbO 2 и CsO 2 более устойчивы, разлагаются при 390-600 0 C. Т-ры плавления супероксидов MO 2 можно определить только под давлением O 2 ; только для KO 2 относительно надежно измерена т. пл. 511 0 C. Р-ция MO 2 с избытком воды идет по схеме: 2MO 2 + 2H 2 O2MOH + H 2 O 2 + O 2 , в присут. катализатора, напр. MnO 2 , и при повыш. т-ре-по схеме: 2MO 2 + H 2 O 2MOH + 3 / 2 O 2 с выделением 305 л O 2 на 1 кг NaO 2 и 236 л O 2 на 1 кг KO 2 . Супероксиды Na и К реагируют с влажным CO 2 при

20 0 C с выделением всего активного O 2 и образованием карбонатов, однако в отсутствие паров воды р-ция с CO 2 начинается лишь при

100 0 C. NaO 2 и KO 2 с СО при 100-180 0 C образуют карбонаты, с SO 2 в присут. небольшого кол-ва паров воды-M 2 SO 4 , при

20 °С с NO 2 -MNO 3 ; раств. в расплавах фторидов и нитратов щелочных металлов, напр. т. пл. эвтектич. сплава KO 2 (34 мол. %) с KNO 3 222 0 C. Под действием O 3 или атомарного О супероксиды MO 2 превращ. в озониды MO 3 . Выделены супероксиды тетраалкиламмония, напр.: [(CH 3 ) 4 N]O 2 и [(C 2 H 3 ] 4 N]O 2 -кристаллы; устойчивы ниже 60 0 C, при нагр. взрывают; хорошо раств. в жидком NH 3 и орг. р-рителях.

Супероксиды щел.-зем. металлов М(О 2 ) 2 образуются в смеси с M(OH) 2 и MO 2 при вакуумно-термич. обработке MO 2 ·2H 2 O 2 , где M = Ca, Sr, Ba. Термич. устойчивость M(O 2 ) 2 тем ниже, чем выше содержание его в смеси. Для Ca(O 2 ) 2 рассчитаны и соотв. — 395 и — 322 кДж/моль. По окраске и хим. св-вам супероксиды щел.-зем. и щелочных металлов похожи, но первые менее активны.

В пром-сти KO 2 получают р-цией К с O 2 ок. 327 0 C (расплавл. К с помощью форсунки впрыскивают в воздух, обогащенный O 2 ). Аналогично можно синтезировать RbO 2 и CsO 2 , но не NaO 2 , к-рый получают медленным нагреванием Na 2 O 2 до 230-430 0 C в автоклаве при давлении O 2 10-15 МПа.

Продукт содержит 85-95% NaO 2 ; более чистый NaO 2 м. б. получен действием O 2 на Na в среде 1, 2-димет-оксиэтана в присут. флуорена или бензофенона при нормальных условиях. NaO 2 и KO 2 — компоненты регенеративных в-в, используемых для поддержания постоянного состава атмосферы в замкнутых обитаемых помещениях.

Читайте также:  Что значит не хватает железа

Пероксокислоты. Неустойчивы и в своб. состоянии, и в водном р-ре, но соли нек-рых из пероксокислот стабильны. Пероксобораты — наиб. многочисл. группа солей пероксокислот. Известны два пероксокарбонатных аниона — пероксо-монокарбонат и пероксидикарбонат . Их щелочные соли устойчивы в обычных условиях, но распадаются при небольшом нагревании; так, KHCO 4 при 60-80 0 C экзотермически распадается на K 2 CO 3 , CO 2 , O 2 и H 2 O, K 2 C 2 O 6 разлагается при 140-160 0 C эндотермически на K 2 CO 3 , CO 2 и O 2 . Пероксоазотная к-та HNO 4 (HOONO 2 ) малоустойчива даже в разб. р-ре; ее образование в разреженном газе по р-ции HO 2 + NO 2 HOONO 2 играет важную роль в каталитич. стратосферных циклах, включающих оксиды азота и радикалы НО • и НО • 2 . Соли HNO 4 неизвестны, но ее ковалентные производные ROONO 2 , где R = CH 3 CO, CCl 3 , CF 3 , вполне стабильны. Соли монопероксофосфорной к-ты H 3 PO 5 не выделены, а пероксополифосфаты известны, напр. Na 4 P 2 O 8 и K 4 P 2 O 8 . Сера образует две пероксокисло-ты -монопероксосерную H 2 SO 5 (к-та Каро) и более стабильную пероксодисерную H 2 S 2 O 8 , выделенную в своб. состоянии в виде бесцв. кристаллов с т. пл. 65 0 C. Пероксокислоты и их соли получают анодным окислением соответствующих простых к-т и солей или р-цией их с H 2 O 2 . Пероксосерные к-ты — промежут. продукты при электрохим. получении H 2 O 2 из р-ров H 2 SO 4 . Пероксокислоты галогенов неизвестны.

Пероксосольваты (пероксогидраты, пергидраты, гидропе-роксидаты) — продукты присоединения (в результате образования водородных связей) H 2 O 2 к анионам неорг. или орг. K-T и нек-рым нейтральным молекулам. Кристаллы; могут служить твердыми носителями H 2 O 2 . Наиб. известны натрия пероксокарбонат Na 2 CO 3 ·1,5H 2 O 2 и соед. H 2 O 2 с мочевиной CO(NH 2 )•H 2 O 2 (гидроперит). Большинство пероксо-сольватов термически неустойчивы, отщепление и распад присоединенной H 2 O 2 происходит при 82-147 0 C. При растворении в воде пероксосольваты распадаются на исходные компоненты. Связь H 2 O 2 с анионом к-ты тем прочнее, чем выше отрицат. заряд и меньше число атомов аниона. Известны пероксосольваты фторидов, напр. KF·n H 2 O 2 , где n = 1, 2, 3, оксалатов M 2 C 2 O 4 ·H 2 O 2 , сульфатов, напр. (NH 4 ) 2 SO 4 ·H 2 O 2 , и др. Получают пероксосольваты кристаллизацией из водных р-ров, содержащих H 2 O 2 и соответствующую соль. Пероксокарбонат Na и гидроперит производят в пром-сти; их р-ры применяют для отбеливания, дезинфекции и в др. областях, где используют H 2 O 2 .

В очень кислых средах молекула H 2 O 2 присоединяет H и образует пероксониевый катион [HOOH 2 ] + , соли к-рого H 3 O 2 + AsF 6 — , H 3 O 2 + Sb 2 F 11 — , H 3 O 2 + SbF 6 — выделены из р-ра в безводном HF; все они распадаются при 22-47 0 C на O 2 и соли H 3 O + .

Координационные пероксиды и супероксиды. Наиб. характерны соед. с . Один ион металла м. б. координирован с 1-3 и даже 4 ионами , в последнем случае вся коорди-нац. сфера комплекса занята пероксолигандами, напр. . Пероксокомплексы со смешанными лигандами [ML х (O 2 ) y ] n + , где L-неорг. анион или молекула или орг. донорныи лиганд. Структура металл-ди-кислородных фрагментов в большинстве случаев относится к одному из трех видов: тип I-только для , II -для и , III для и

Пероксокомплексы типа I особенно характерны для Cr, Ti, V, Mo, Nb, Zr, Та, W, Hf, U. Пероксо- и супероксоком-плексы типа II преобладают у Со, Cu, Rh, Ru, Cr, Fe, напр. [ 2 (O 2 )] 5- В нек-рых комплексах Cu, Rh, Pt группировка типа II входит в цикл (ф-ла В). Тип III характерен для супероксокомплексов Со, Cr, Ru, Rh, Mn и мн. комплексов Fe, Со, Cu и др. с мол. O 2 . Суперкомплекс [ 2 (O 2 )] — относится к типу III, ковалентные II. с. к типу II. Пероксокомплексы получают взаимод. солей или комплексов соответствующего металла с H 2 O 2 , супероксокомплексы-из M + или прямой р-цией O 2 с металлокомплексами. Комплексы с мол. O 2 используют для переноса и концентри-рования O 2 и для изменения его реакц. способности («активация лиганда»). Пероксокомплексы Mo и V применяют для -)поксидирования олефинов, напр. в пром-сти-для получения пропиленоксида.

Источник

Поделиться с друзьями
Металл и камни