Как защитить медь от электрохимической коррозии

Коррозия меди и ее сплавов: причины и способы решения проблемы

Медь и медные сплавы имеют высокую электро- и теплопроводность, поддаются механической обработке, обладают хорошей стойкостью к коррозии, поэтому активно применяются во многих отраслях промышленности. Но при попадании в определенную среду все-таки проявляется коррозия меди и ее сплавов. Что это такое и как защитить изделия от порчи, рассмотрим в этой статье.

Что такое коррозия

Это разрушение металлов в результате воздействия на них окружающей среды. В странах с хорошо развитой промышленность ущерб от коррозии составляет 4–5% национального дохода. Портятся не только металлы, но и механизмы, и детали, изготовленные из них, что ведет к очень большим затратам. В результате ржавления трубопроводов зачастую происходит утечка вредных химических веществ, что приводит к загрязнению почвы, воды и воздуха. Все это пагубно сказывается на здоровье людей. Коррозия меди является спонтанным ее разрушением под влиянием отдельных элементов среды обитания человека. Причина порчи металла заключается в неустойчивости его к отдельным веществам, находящимся в воздухе. Скорость коррозии тем больше, чем выше температура.

Свойства меди

Вам будет интересно: «Ямаха» 3 л. с. отзывы: отзывы реальных покупателей, инструкция, плюсы и минусы лодочного мотора

Вам будет интересно: «Мастер Мебель»: отзывы покупателей о качестве и разнообразии продукции

Медь – это самый первый металл, который стал использовать человек. Она золотистого цвета, а на воздухе покрывается оксидной пленкой и приобретает красно-желтый цвет, что отличает ее от других металлов, имеющих серый оттенок. Она очень пластична, обладает высокой теплопроводностью, считается отличным проводником, уступая только серебру. В слабой соляной кислоте, пресной и морской воде коррозия меди незначительная.

На открытом воздухе происходит окисление металла с образованием оксидной пленки, защищающей металл. Со временем она темнеет и становится коричневого цвета. Слой, покрывающий медь, называют патиной. Он изменяет свой цвет от коричневатого оттенка до зеленого и даже черного.

Электрохимическая коррозия

Это самый распространенный вид разрушения металлических изделий. Электрохимическая коррозия разрушает детали машин, различные конструкции, находящиеся в земле, воде, атмосфере, смазочно-охлаждающих жидкостях. Это повреждение поверхности металлов под воздействием электрического тока, когда при химической реакции происходит отдача и перенос электронов с катодов на аноды. Способствует этому неоднородная химическая структура металлов. При контакте меди с железом в электролите возникает гальванический элемент, где железо становится анодом, а медь – катодом, потому что железо в ряду напряжений по таблице Менделеева стоит левее меди и обладает большей активностью.

В паре железа с медью коррозия железа наступает быстрее, чем меди. Это происходит потому, что при разрушении железа электроны от него переходят к меди, которая остается защищенной до тех пор, пока полностью не разрушится весь слой железа. Этим свойством часто пользуются для защиты деталей и механизмов.

Влияние примесей на порчу металлов

Известно, что металлы в чистом виде практически не подвергаются коррозии. Но на практике все материалы содержат какое-то количество примесей. Как же влияют они на сохранность при эксплуатации изделий? Допустим, что имеется деталь, изготовленная из двух металлов. Рассмотрим, как происходит коррозия меди с алюминием. При нахождении на воздухе ее поверхность покрывается тончайшей пленкой из воды. Надо заметить, что вода разлагается на ионы водорода и гидроксид-ионы, а углекислый газ, растворенный в воде, образует угольную кислоту. Получается, что медь и алюминий, погруженные в раствор, создают гальванический элемент. Причем алюминий – анод, медь – катод (алюминий в ряду напряжений стоит левее меди).

Читайте также:  Как заработать при покупке золота

Ионы алюминия попадают в раствор, а к меди переходят избыточные электроны, разряжая у ее поверхности ионы водорода. Ионы алюминия и гидроксид-тоны соединяются и откладываются на поверхности алюминия в виде белого вещества, вызывая коррозию.

Коррозия меди в кислых средах

Медь проявляет хорошую устойчивость к коррозии в любых условиях, так как нечасто вытесняет водород, потому что она в электрохимическом ряду напряжений стоит около благородных металлов. Широкое использование меди в химической промышленности вызвано ее стойкостью ко многим агрессивным органическим средам:

  • нитратам и сульфидам;
  • фенольным смолам;
  • уксусной, молочной, лимонной и щавелевой кислоте;
  • гидроокиси калия и натрия;
  • слабым растворам серной и соляной кислоты.

С другой стороны, отмечается сильное разрушение меди в:

  • кислых растворах солей хрома;
  • минеральных кислотах — хлорной и азотной, причем коррозия усиливается с увеличением концентрации.
  • концентрированной серной кислоте, усиливаясь при повышении температуры;
  • гидроокиси аммония;
  • окисляющих солях.

Методы предохранения металла

Практически все металлы в газообразной или жидкой среде подвергаются поверхностному разрушению. Основным способом защиты меди от коррозии является нанесение на поверхность изделий защитного слоя, состоящего из:

  • Металла – на медную поверхность изделия наносится слой металла, который более устойчив к коррозии. Например, в качестве него используют латунь, цинк, хром и никель. В этом случае контакт с окружающей средой и окисление будет происходить с металлом, используемым для покрытия. Если защитный слой частично портится, то происходит разрушение основного металла – меди.
  • Неметаллических веществ – это неорганические покрытия, состоящие из стекловидной массы, цементного раствора, или органические – краски, лаки, битум.
  • Химических пленок – защиту образуют химическим способом, создавая на поверхности металла соединения, надежно предохраняющие медь от коррозии. Для этого используют оксидные, фосфатные пленки или насыщают поверхность сплавов азотом, органическими веществами либо обрабатывают углеродом, соединения которого надежно сохраняют ее.

Кроме этого, в состав медных сплавов вводят легирующий компонент, который усиливает антикоррозийные свойства, или изменяют состав окружающей среды, удаляя из нее примеси и вводя ингибиторы, замедляющие протекание реакции.

Заключение

Медь не является химически активным элементом, из-за этого ее разрушение происходит очень медленно практически в любой среде. Поэтому она широко используется во многих отраслях народного хозяйства. Например, металл очень стойко ведет себя в чистой пресной и морской воде. Но при увеличении содержания кислорода или ускорении тока воды устойчивость к коррозии падает.

Источник

Коррозия меди

Медь относится к категории материалов, которые подвергаются коррозии при воздействии агрессивных сред. В результате происходит порча материала, постепенное разрушение и потеря нормальных эксплуатационных качеств.

Во многом особенности процесса и его динамика могут отличаться в зависимости от среды, температурных условий и других характеристик.

Рассмотрим, в каких средах материал начинает портиться быстрее всего и как дополнительно защитить его от процесса ржавения.

Особенности разных видов агрессивных сред

Тип повреждений и скорость коррозии меди напрямую зависят от того, в какой атмосфере она находится. Даже самые качественные материалы не могут выдержать на протяжении длительного времени под сильным агрессивным воздействием.

Далее опишем основные виды сред и их воздействие на материал.

Медные детали могут использоваться в различных вариантах водных сред. Меняется состав жидкости, скорость ее движения и другие важные характеристики.

Основной параметр, влияющий на интенсивность протекания процесса – наличие на поверхности материала уже успевшей сформироваться оксидной пленки.

Читайте также:  Как был открыт элемент титан

Есть несколько параметров, влияющих на протекание процесса в водной среде:

  • Интенсивность движения потока. Коррозия меди в воде усиливается, когда поток движется с большой скоростью. В таком случае процесс ржавения будет называться ударным.
  • Степень аэрированности. Чем больше в воде кислорода, тем выше скорость протекания ударной коррозии. Это особенно актуально для воды с пониженной жесткостью и значительной степенью содержания хлора.
  • Климатическая зона. Обычно в теплых и влажных областях скорость протекания процесса становится значительно выше.
  • Состав воды. Как и для других видов металлов, морская вода представляет для меди самую большую опасность. Есть значительный риск развития электрохимической коррозии меди при контакте нескольких видов металлических изделий, расположенных неподалеку друг от друга. Но есть и преимущество – исключено биологическое ржавение, потому что на медных поверхностях вредоносные морские микроорганизмы не выживают. При использовании в чистой воде, опасность намного меньше, потому часто медные трубы применяются для монтажа системы отопления и водоснабжения в частном секторе.

Иногда разрушение может стимулироваться и неожиданными катализаторами. Один из них – прохождение воды через сильно изношенные коммунальные сети. Если в воде большое количество железа, есть большой риск начала электрохимического процесса.

Стоит также обратить внимание на то, какие материалы располагаются рядом с медными изделиями в условиях высокой влажности.

Среди наиболее опасных – алюминий и цинк.

Универсальным решением для проблемы использования труб в коммунальных сетях, становится применение в процессе их изготовления луженой меди. В этом случае изнутри труба покрывается оловом.

Стоимость производства становится выше, но процесс окупает себя за счет увеличения продолжительности использования без замен.

Атмосферное воздействие

Этот тип материала – один из наиболее стойких среди всех представленных на рынке, когда дело доходит до применения на открытом воздухе.

Главное свойство материала в таком случае – возможность постепенного появления оксидной пленки (патины). Именно патина становится естественным защитным покрытием, которое ограничивает контакт такого вида сырья со множеством типов потенциальных окислителей.

Таким образом достигается аналогичный цинкованию эффект, но без использования дополнительных примесей и составов.

По причине склонности к патинированию, можно свободно использовать медь на открытом воздухе. Этим часто пользуются архитекторы, когда нужно обеспечить покрытие кровли, создание малых архитектурных форм и решить другие вопросы в рамках комплексного благоустройства.

Скорость появления патины может отличаться в зависимости от климатической зоны, средних температур и других особенностей.

Вероятность негативного воздействия атмосферы увеличивается в том случае, если в воздухе много посторонних примесей. Особенно часто начинает развиваться коррозия в местах, где в воздушной среде рассеяно много хлоридов и сульфидов.

Почва

При ответе на вопрос о том, может ли медь ржаветь, когда изделие помещается в почву, важно учитывать главный параметр грунта – рН или степень щелочности.

Чем она выше, тем больше будет кислотность. Так как кислоты негативно влияют на состояние меди и запускают процесс коррозии, лучше не использовать материал в сильно щелочных грунтах.

Еще один потенциальный фактор опасности – большая концентрация грунтовых микроорганизмов.

Проблем связана с тем, что в процессе своей жизни они выделяют сероводород.

Это еще одно вещество, которое негативно влияет как на саму медь, так и на ее многочисленные сплавы.

Обычно при контакте с негативными факторами грунта, на поверхности материала начинают накапливаться продукты коррозии. Они наслаиваются друг на друга, пленка может становиться рыхлой, неоднородной.

Потому если в атмосфере на материале возникает благородная патина, то в почве структура сильно отличается. Чаще всего – это крупные слоистые твердые наросты.

Интересная особенность меди заключается в том, что даже если она провела в земле много лет, большинство продуктов окисления можно удалить механическим или химическим методами.

Читайте также:  Какая арматура лучше для армопояса металл или пластик

Может ли ржаветь луженая медь

Выше отмечалось, что одним из средств борьбы с коррозией медных труб становится использование процесса лужения – нанесения на внутреннюю поверхность слоя олова. Но важно понимать, что для металлического изделия это не панацея.

Само оловянное покрытие становится анодом. Это значит, что по отношению к меди у него более отрицательный потенциал.

Главное условие защиты от ржавения заключается в том, чтобы на оловянном слое не было трещин и иных дефектов. Если они все-таки появляются, коррозия меди на воздухе протекает намного быстрее.

В каких средах можно и нельзя использовать медь

При правильной обработке, материал прослужит без коррозии более 100 лет. Но важно понимать, где медь будет устойчива к катализаторам коррозии, а где есть большой риск ее появления.

Безопаснее всего применять материал на открытом воздухе и в пресной воде, вне зависимости от степени охлаждения или нагрева. В морской воде материал также долго остается неповрежденным и сохраняет свои эксплуатационные характеристики.

Также можно не беспокоиться за сохранность медной детали, если в окружающей среде нет сильных окислителей.

Опасность потенциально может появляться в том случае, если в почве, воде или воздухе есть много сероводорода, присутствует угольная кислота, соли тяжелых металлов, амины.

Когда вода сильно аэрирована, также возникает значительная опасность ударной коррозии и других видов постепенного разрушения.

Потому при покупке такого материала очень важно понимать, где вы будете использовать медное изделие, и какие внешние угрозы будут действовать на него в процессе эксплуатации.

О важности чистки

Чтобы продлить срок использования вашего изделия, его нужно регулярно чистить.

Постепенно большинство типов бытовых приборов и других материалов могут потерять товарный вид и потускнеть из-за образования оксидной пленки.

Это красивое средство для состаривания посуды или других видов изделий, но многим присутствие патины не нравится.

Есть несколько наиболее распространенных методов очистки, помогающих снять патину и оставить основной материал без повреждений:

  • Специальные растворы для мытья посуды. В таком случае поверхность становится более восприимчивой к удалению оксидной пленки. Если она появилась недавно, снять продукты окисления можно будет, не прикладывая серьезных усилий.
  • Лимонная кислота. Может использоваться как в составе раствора, так и при простом воздействии на поверхность свежеразрезанной долькой. Патина удаляется быстро и эффективно.
  • Уксус. Оказывает такое же действие, как и лимон. Для улучшения эффекта, его часто смешивают с солью или мукой.

И это только часть методов, которые можно применять для борьбы с патиной.

Как защитить медь от коррозии

Существует множество средств, которые позволяют уменьшить вероятность появления коррозии в различных средах. Среди них такие, как:

  • Изменение состава материала. Использование легирования позволяет значительно увеличить уровень коррозийной стойкости. При этом примеси могут быть разные – главное учитывать область использования готовой детали и понимать потенциальные риски, чтобы их устранить.
  • Лужение. Процесс заключается в обработке жидким оловом. На поверхности создается эффективный защитный слой. При условии отсутствия дефектов, он ограничит контакт с атмосферой и другими факторами, приводящими к появлению коррозии.
  • Контроль за областью использования. При закупке медных изделий важно понимать, где вы будете их применять. Требуется оградить материал от контакта с серой и ее соединениями, не допустить, чтобы поблизости располагались цинковые или алюминиевые детали. Они могут спровоцировать появление электрохимической коррозии.

Учет стандартных требований по использованию медных изделий позволит значительно увеличить срок их службы и не допустить проблем с возникновением коррозии.

Источник

Поделиться с друзьями
Металл и камни