- УРАН (химический элемент)
- Нахождение в природе.
- Открытие.
- Первые применения урана.
- Современное применение урана.
- Свойства.
- Изотопы урана
- Соединения.
- Уран (хим. элемент)
- Содержание
- История
- Нахождение в природе
- Изотопы
- Получение
- Физические свойства
- Химические свойства
- Применение
- Ядерное топливо
- Другие сферы применения
- Обеднённый уран
- Сердечники бронебойных снарядов
- Физиологическое действие
- Разведанные запасы урана в мире
- Добыча урана в мире
- Добыча в России
- Добыча на Украине
- Стоимость
- См. также
- Ссылки
УРАН (химический элемент)
УРАН, U (uranium), металлический химический элемент семейства актиноидов, которые включают Ac, Th, Pa, U и трансурановые элементы (Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr). Уран приобрел известность благодаря использованию его в ядерном оружии и атомной энергетике. Оксиды урана применяются также для окрашивания стекла и керамики.
Нахождение в природе.
Содержание урана в земной коре составляет 0,003%, он встречается в поверхностном слое земли в виде четырех видов отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как радий является прямым продуктом изотопного распада урана. Такие жилы встречаются в Заире, Канаде (Большое Медвежье озеро), Чехии и Франции. Вторым источником урана являются конгломераты ториевой и урановой руды совместно с рудами других важных минералов. Конгломераты обычно содержат достаточные для извлечения количества золота и серебра, а сопутствующими элементами становятся уран и торий. Большие месторождения этих руд находятся в Канаде, ЮАР, России и Австралии. Третьим источником урана являются осадочные породы и песчаники, богатые минералом карнотитом (уранил-ванадат калия), который содержит, кроме урана, значительное количество ванадия и других элементов. Такие руды встречаются в западных штатах США. Железоурановые сланцы и фосфатные руды составляют четвертый источник отложений. Богатые отложения обнаружены в глинистых сланцах Швеции. Некоторые фосфатные руды Марокко и США содержат значительные количества урана, а фосфатные залежи в Анголе и Центральноафриканской Республике еще более богаты ураном. Большинство лигнитов и некоторые угли обычно содержат примеси урана. Богатые ураном отложения лигнитов обнаружены в Северной и Южной Дакоте (США) и битумных углях Испании и Чехии.
Открытие.
Уран был открыт в 1789 немецким химиком М.Клапротом, который присвоил имя элементу в честь открытия за 8 лет перед этим планеты Уран. (Клапрот был ведущим химиком своего времени; он открыл также другие элементы, в том числе Ce, Ti и Zr.) В действительности вещество, полученное Клапротом, было не элементным ураном, но окисленной формой его, а элементный уран был впервые получен французским химиком Э.Пелиго в 1841. С момента открытия и до 20 в. уран не имел того значения, какое он имеет сейчас, хотя многие его физические свойства, а также атомная масса и плотность были определены. В 1896 А.Беккерель установил, что соли урана обладают излучением, которое засвечивает фотопластинку в темноте. Это открытие активизировало химиков к исследованиям в области радиоактивности и в 1898 французские физики супруги П.Кюри и М.Склодовская-Кюри выделили соли радиоактивных элементов полония и радия, а Э.Резерфорд, Ф.Содди, К.Фаянс и другие ученые разработали теорию радиоактивного распада, что заложило основы современной ядерной химии и атомной энергетики.
Первые применения урана.
Хотя радиоактивность солей урана была известна, его руды в первой трети нынешнего столетия использовались лишь для получения сопутствующего радия, а уран считался нежелательным побочным продуктом. Его использование было сосредоточено в основном в технологии керамики и в металлургии; оксиды урана широко применяли для окраски стекла в цвета от бледножелтого до темнозеленого, что способствовало развитию недорогих стекольных производств. Сегодня изделия этих производств идентифицируют как флуоресцирующие под ультрафиолетовыми лучами. Во время Первой мировой войны и вскоре после нее уран в виде карбида применяли в производстве инструментальных сталей, аналогично Mo и W; 4–8% урана заменяли вольфрам, производство которого в то время было ограничено. Для получения инструментальных сталей в 1914–1926 ежегодно производили по нескольку тонн ферроурана, содержащего до 30% (масс.) U. Однако такое применение урана продолжалось недолго.
Современное применение урана.
Промышленность урана начала складываться в 1939, когда было осуществлено деление изотопа урана 235 U, что привело к технической реализации контролируемых цепных реакций деления урана в декабре 1942. Это было рождение эры атома, когда уран из незначительного элемента превратился в один из наиболее важных элементов в жизни общества. Военное значение урана для производства атомной бомбы и использование в качестве топлива в ядерных реакторах вызвали спрос на уран, который возрос в астрономических размерах. Интересна хронология роста потребности в уране по истории отложений в Большом Медвежьем озере (Канада). В 1930 в этом озере была обнаружена смоляная обманка – смесь оксидов урана, а в 1932 на этом участке была налажена технология очистки радия. Из каждой тонны руды (смоляной обманки) получали 1 г радия и около половины тонны побочного продукта – уранового концентрата. Однако радия было мало и его добыча была прекращена. С 1940 по 1942 разработку возобновили и начали отправку урановой руды в США. В 1949 аналогичная очистка урана с некоторыми усовершенствованиями была применена для производства чистого UO2. Это производство росло, и в настоящее время оно является одним из наиболее крупных производств урана.
СВОЙСТВА УРАНА | |
Атомный номер | 92 |
Атомная масса | 238,03 |
Изотопы | |
стабильные | нет |
нестабильные | 226–242 |
в т. ч. природные | 234, 235, 236 (следы), 238 |
Температура плавления, °С | 1132 |
Температура кипения, °С | 3818 |
Плотность, г/см 3 | 18,7 |
Твердость (по Моосу) | 4,0 |
Содержание в земной коре, % (масс.) | 0,003 |
Степени окисления | +3, +4, +5, +6 |
Свойства.
Уран – один из наиболее тяжелых элементов, встречающихся в природе. Чистый металл очень плотный, пластичный, электроположительный с малой электропроводностью и высокореакционноспособный.
Уран имеет три аллотропные модификации: a -уран (орторомбическая кристаллическая решетка), существует в интервале от комнатной температуры до 668 ° С; b -уран (сложная кристаллическая решетка тетрагонального типа), устойчивый в интервале 668–774 ° С; g -уран (объемноцентрированная кубическая кристаллическая решетка), устойчивый от 774 ° С вплоть до температуры плавления (1132 ° С). Поскольку все изотопы урана нестабильны, все его соединения проявляют радиоактивность.
Изотопы урана
238 U, 235 U, 234 U встречаются в природе в соотношении 99,3:0,7:0,0058, а 236 U – в следовых количествах. Все другие изотопы урана от 226 U до 242 U получают искусственно. Изотоп 235 U имеет особо важное значение. Под действием медленных (тепловых) нейтронов он делится с освобождением огромной энергии. Полное деление 235 U приводит к выделению «теплового энергетического эквивалента» 2 Ч 10 7 кВт Ч ч/кг. Деление 235 U можно использовать не только для получения больших количеств энергии, но также для синтеза других важных актиноидных элементов. Уран природного изотопного состава можно использовать в ядерных реакторах для производства нейтронов, образующихся при делении 235 U, в то же время избыточные нейтроны, не востребуемые цепной реакцией, могут захватываться другим природным изотопом, что приводит к получению плутония:
При бомбардировке 238 U быстрыми нейтронами протекают следующие реакции:
Согласно этой схеме, наиболее распространенный изотоп 238 U может превращаться в плутоний-239, который, подобно 235 U, также способен делиться под действием медленных нейтронов.
В настоящее время получено большое число искусственных изотопов урана. Среди них 233 U особенно примечателен тем, что он также делится при взаимодействии с медленными нейтронами.
Некоторые другие искусственные изотопы урана часто применяются в качестве радиоактивных меток (индикаторов) в химических и физических исследованиях; это прежде всего b -излучатель 237 U и a -излучатель 232 U.
Соединения.
Уран – высокореакционноспособный металл – имеет степени окисления от +3 до +6, близок бериллию в ряду активности, взаимодействует со всеми неметаллами и образует интерметаллические соединения с Al, Be, Bi, Co, Cu, Fe, Hg, Mg, Ni, Pb, Sn и Zn. Тонкораздробленный уран особенно реакционноспособен и при температурах выше 500 ° С часто вступает в реакции, характерные для гидрида урана. Кусковой уран или стружка ярко сгорает при 700–1000 ° С, а пары урана горят уже при 150–250 ° С, с HF уран реагирует при 200–400 ° С, образуя UF4 и H2. Уран медленно растворяется в концентрированной HF или H2SO4 и 85%-ной H3PO4 даже при 90 ° С, но легко реагирует с конц. HCl и менее активно с HBr или HI. Наиболее активно и быстро протекают реакции урана с разбавленной и концентрированной HNO3 с образованием нитрата уранила (см. ниже). В присутствии HCl уран быстро растворяется в органических кислотах, образуя органические соли U 4+ . В зависимости от степени окисления уран образует несколько типов солей (наиболее важные среди них с U 4+ , одна из них UCl4 – легко окисляемая соль зеленого цвета); соли уранила (радикала UO2 2+ ) типа UO2(NO3)2 имеют желтую окраску и флуоресцируют зеленым цветом. Соли уранила образуются при растворении амфотерного оксида UO3 (желтая окраска) в кислой среде. В щелочной среде UO3 образует уранаты типа Na2UO4 или Na2U2O7. Последнее соединение («желтый уранил») применяют для изготовления фарфоровых глазурей и в производстве флуоресцентных стекол. См. также КЕРАМИКА ПРОМЫШЛЕННАЯ.
Галогениды урана широко изучались в 1940–1950, так как на их основе были разработаны методы разделения изотопов урана для атомной бомбы или ядерного реактора. Трифторид урана UF3 был получен восстановлением UF4 водородом, а тетрафторид урана UF4 получают разными способами по реакциям HF с оксидами типа UO3 или U3O8 или электролитическим восстановлением соединений уранила. Гексафторид урана UF6 получают фторированием U или UF4 элементным фтором либо действием кислорода на UF4. Гексафторид образует прозрачные кристаллы с высоким коэффициентом преломления при 64 ° С (1137 мм рт. ст.); соединение летуче (в условиях нормального давления возгоняется при 56,54 ° С). Оксогалогениды урана, например, оксофториды, имеют состав UO2F2 (фторид уранила), UOF2 (оксид-дифторид урана). См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ; РАДИОАКТИВНОСТЬ; УРАНИНИТ; УРАНОВАЯ ПРОМЫШЛЕННОСТЬ.
Источник
Уран (хим. элемент)
Уран (U) | |
---|---|
Атомный номер | 92 |
Внешний вид простого вещества | |
Свойства атома | |
Атомная масса (молярная масса) | 238.0289 а. е. м. (г/моль) |
Радиус атома | 138 пм |
Энергия ионизации (первый электрон) | 686,4(7,11) кДж/моль (эВ) |
Электронная конфигурация | [Rn] 5f 3 6d 1 7s 2 |
Химические свойства | |
Ковалентный радиус | 142 пм |
Радиус иона | (+6e) 80 (+4e) 97 пм |
Электроотрицательность (по Полингу) | 1,38 |
Электродный потенциал | U←U 4+ -1,38В U←U 3+ -1,66В U←U 2+ -0,1В |
Степени окисления | 6, 5, 4, 3 |
Термодинамические свойства простого вещества | |
Плотность | 19,05 г/см³ |
Удельная теплоёмкость | 0,115 Дж/(K·моль) |
Теплопроводность | 27,5 Вт/(м·K) |
Температура плавления | 1405,5 K |
Теплота плавления | 12,6 кДж/моль |
Температура кипения | 4018 K |
Теплота испарения | 417 кДж/моль |
Молярный объём | 12,5 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | орторомбическая |
Период решётки | 2,850 Å |
Отношение c/a | n/a |
Температура Дебая | n/a K |
Ура́н — химический элемент с атомным номером 92 в периодической системе, атомная масса 238,029; обозначается символом U (лат. Uranium ), относится к семейству актиноидов.
Содержание
История
Ещё в древнейшие времена (I век до нашей эры) природная окись урана использовалась для изготовления жёлтой глазури для керамики.
Нахождение в природе
Уран широко распространён в природе. Кларк урана составляет 1·10 -3 % (вес.). Количество урана в слое литосферы толщиной 20 км оценивается в 1,3·10 14 т.
Основная масса урана находится в кислых породах с высоким содержанием кремния. Важнейшими урановыми рудами являются урановая смолка (уранинит) и карнотит.
Минерал | Основной состав минерала | Содержание урана, % | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Уранинит | UO2, UO3 + ThO2, CeO2 | 65-74 | |||||||||||||||||||||||||||||||||||||||||||
Карнотит | K2(UO2)2(VO4)2·2H2O | ||||||||||||||||||||||||||||||||||||||||||||
Казолит | PbO2·UO3·SiO2·H2O | ||||||||||||||||||||||||||||||||||||||||||||
Самарскит | (Y, Er, Ce, U, Ca, Fe, Pb, Th)·(Nb, Ta, Ti, Sn)2O6 | 3.15-14 | |||||||||||||||||||||||||||||||||||||||||||
Браннерит | (U, Ca, Fe, Y, Th)3Ti5O15 | 40 | |||||||||||||||||||||||||||||||||||||||||||
Тюямунит | CaO·2UO3·V2O5·nH2O | 50-60 | |||||||||||||||||||||||||||||||||||||||||||
Цейнерит | Cu(UO2)2(AsO4)2·nH2O | 50-53 | |||||||||||||||||||||||||||||||||||||||||||
Отенит | Ca(UO2)2(PO4)2·nH2O | ||||||||||||||||||||||||||||||||||||||||||||
Шрекингерит | Ca3NaUO2(CO3)3SO4(OH)·9H2O | 25 | |||||||||||||||||||||||||||||||||||||||||||
Уранофан | CaO·UO2·2SiO2·6H2O | ||||||||||||||||||||||||||||||||||||||||||||
Фергюсонит | (Y, Ce)(Fe, U)(Nb, Ta)O4 | 0.2-8 | |||||||||||||||||||||||||||||||||||||||||||
Торбернит | Cu(UO2)2(PO4)2·nH2O | ||||||||||||||||||||||||||||||||||||||||||||
Коффинит | U(SiO4)1-x(OH)4x |
Массовое число | Период полураспада | Тип распада |
---|---|---|
234 | 2,45·10 5 лет | α |
235 | 7,13·10 8 лет | α |
236 | 2,39·10 7 лет | α |
237 | 6,75 сут. | β — |
238 | 4,49·10 9 лет | α |
239 | 23,54 мин. | β — |
240 | 14 час. | β — |
Химические свойства
Уран может проявлять степени окисления от +III до +VI. Соединения урана(III) образуют неустойчивые растворы красного цвета и являются сильными восстановителями:
Соединения урана(IV) являются наиболее устойчивыми и образуют водные растворы зелёного цвета.
Соединения урана(V) неустойчивы и легко диспропорционируют в водном растворе:
Химически уран очень активный металл. Быстро окисляясь на воздухе, он покрывается радужной пленкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре 150—175 °C, образуя U3O8. При 1000 °C уран соединяется с азотом, образуя желтый нитрид урана. Вода способна разъедать металл, медленно при низкой температуре, и быстро при высокой, а также при мелком измельчении порошка урана. Уран растворяется в соляной, азотной и других кислотах, образуя четырёхвалентные соли, зато не взаимодействует с щелочами. Уран вытесняет водород из неорганических кислот и солевых растворов таких металлов, как ртуть, серебро, медь, олово, платина и золото. При сильном встряхивании металлические частицы урана начинают светиться. Уран имеет четыре степени окисления — III—VI. Шестивалентные соединения включают в себя триокись урана (окись уранила) UO3 и уранилхлорид урана UO2Cl2. Тетрахлорид урана UCl4 и диоксид урана UO2 — примеры четырёхвалентного урана. Вещества, содержащие четырёхвалентный уран, обычно нестабильны и обращаются в шестивалентные при длительном пребывании на воздухе. Ураниловые соли, такие как уранилхлорид, распадаются в присутствии яркого света или органики.
Применение
Ядерное топливо
Наибольшее применение имеет изотоп урана 235 U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии . Выделение изотопа U 235 из природного урана — сложная технологическая проблема, (см. разделение изотопов).
Изотоп U 238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности термоядерного оружия (используются нейтроны, порождённые термоядерной реакцией).
В результате захвата нейтрона с последующим β-распадом 238 U может превращаться в 239 Pu, который затем используется как ядерное топливо.
Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), является ядерным топливом для атомных электростанций и производства атомных бомб (критическая масса около 16 кг).
Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.
Другие сферы применения
- Небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу (см. Урановое стекло). [1][2]
- Уранат натрия Na2U2O7 использовался как жёлтыйпигмент в живописи. [2]
- Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления). [2]
- Некоторые соединения урана светочувствительны. [2]
- В начале XX века уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет. [2]
- Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело — водород + гексан).
- Сплавы железа и обеднённого урана (уран-238) применяются как мощные магнитострикционные материалы.
Обеднённый уран
После извлечения 235 U и 234 U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6).
Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234 U. Из-за того, что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью.
В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолёте «Боинг-747» содержится 1500 кг обеднённого урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.
Сердечники бронебойных снарядов
Самое известное применение обеднённого урана — в качестве сердечников для бронебойных снарядов. При сплавлении с 2 % Mo или 0,75 % Ti и термической обработке (быстрая закалка разогретого до 850 °C металла в воде или масле, дальнейшее выдерживание при 450 °C 5 часов) металлический уран становится твёрже и прочнее стали (прочность на разрыв больше 1600 МПа, при том, что у чистого урана она равна 450 МПа). В сочетании с большой плотностью, это делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому вольфраму. Тяжёлый урановый наконечник также изменяет распределение масс в снаряде, улучшая его аэродинамическую устойчивость.
Подобные сплавы типа «Стабилла» применяются в стреловидных оперенных снарядах танковых и противотанковых артиллерийских орудий.
Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе с другой стороны брони (см. Пирофорность). Около 300 тонн обеднённого урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолётов A-10, каждый снаряд содержит 272 г уранового сплава).
Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии [3] . После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.
Впервые уран в качестве сердечника для снарядов был применен в Третьем рейхе.
Обеднённый уран используется в современной танковой броне, например, танка M-1 «Абрамс».
Физиологическое действие
В микроколичествах (10 −5 —10 −8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких — 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгкие и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10 −7 г.
Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.
Разведанные запасы урана в мире
Добыча урана в мире
Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 добыто 41 250 тонн урана (в 2003 — 35 492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объёма его потребления (остальное извлекается из старых ядерных боеголовок).
Добыча по странам в тоннах по содержанию U на 2005—2006 гг.
Страна | 2005 год |
Канада | 11 410 |
Австралия | 9044 |
Казахстан | 4020 |
Россия | 3570 |
США | 1249 |
Украина | 920 |
Китай | 920 |
Добыча по компаниям в 2006 г.
- Rio Tinto — 7 тыс. тонн
- AREVA — 5 тыс. тонн
- Казатомпром — 3,8 тыс.тонн
- ОАО ТВЭЛ — 3,5 тыс. тонн
- BHP Billiton — 3 тыс. тонн
- Навоийский ГМК — 2,1 тыс. тонн (Узбекистан, Навои)
- Uranium One — 1 тыс. тонн
- Heathgate — 0,8 тыс. тонн
- Denison Mines — 0,5 тыс. тонн
Добыча в России
На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав корпорации «ТВЭЛ».
Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).
Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.
Добыча на Украине
Стоимость
Несмотря на бытующие легенды о десятках тысяч долларов за килограммовые или даже грамовые количества урана, реальная его цена на рынке не очень высока — необогащённая окись урана U3O8 стоит порядка 200 американских долларов за килограмм [4] . Связано это с тем, что для запуска атомного реактора на необогащённом уране нужны десятки или даже сотни тонн топлива, а для изготовления ядерного оружия следует обогатить большое количество урана для получения пригодных для создания бомбы концентраций [5] .
См. также
Ссылки
- Уран на Webelements
- Уран в Популярной библиотеке химических элементов
- [5]
- ↑[1]
- ↑ 12345Техническая энциклопедия 1927 года», том 24, столб. 596…597, статья «Уран»
- ↑[2]
- ↑[3]Цены на энергоносители по состоянию на 30 сентября 2007.
- ↑[4]Статья про ядерное оружие, см. подраздел про урановую бомбу.
Ядерная технология | |
---|---|
Инженерия | Инерциальный синтез · Корпусной ядерный реактор · Кипящий ядерный реактор · 4-го поколения · Реактор на быстрых нейтронах · Магноксовый · Графито-газовый ядерный реактор · Газоохлаждаемый быстрый · Реактор с жидкометаллическим теплоносителем · Со свинцовым теплоносителем · Реактор на расплавах солей · Сверхкритический водоохлаждаемый · Сверхвысокотемпературный · С гранулированным топливом · Интегральный быстрый реактор · SSTAR Позитронно-эмиссионная томография · Однофотонная эмиссионная компьютерная томография (ОФЭКТ) · Гамма-камера Источник |