С чем реагируют гидриды металлов

Гидриды

Водородные соединения – это сложные вещества, состоящие из двух элементов, один из которых водород. Водородные соединения разделяют на солеобразные гидриды и летучие водородные соединения.

Солеобразные гидриды ЭН – это соединения металлов IA, IIA групп и алюминия с водородом. Степень окисления водорода равна -1.

Летучие водородные соединения НЭ – это соединения неметаллов с водородом. Степень окисления водорода равна +1.

Летучие водородные соединения НЭ – это соединения неметаллов с водородом Солеобразные гидриды ЭН – это соединения металлов IA, IIA групп и алюминия с водородом
Степень окисления водорода равна +1.

Проявляют основные, кислотные или амфотерные свойства. Как правило, сильные восстановители.

Степень окисления водорода равна -1.

Для солеобразных гидридов характерны некоторые свойства солей: гидролиз, обменные реакции и т.д.

Элементы IVА гр.: ЭН4 (SiH4 – силан, CH4 – метан)

Элементы VА гр.: ЭН3 (NH3 — аммиак, PH3 — фосфин, AsH3 – арсин, SbH3 – стибин)

Элементы VIА гр.: Н2Э (Н2S – сероводород, H2Se – селеноводород, Н2Те – теллуроводород и т.д.)

Элементы VIIА гр.: НЭ (НF – фтороводород, хлороводород и т.д.)

NaH – гидрид натрия, CaH2 – гидрид кальция и т.д.

Стибин SbH3 (сурьмянистый водород) — неорганическое бинарное химическое соединение сурьмы с водородом, имеющее чесночный запах.

Арсин AsH3 (мышьяковистый водород, гидрид мышьяка) — гидрид мышьяка, химическое соединение мышьяка и водорода. При нормальных условиях — ядовитый бесцветный газ. Абсолютно чистый химически арсин запаха не имеет, но ввиду неустойчивости продукты его окисления придают арсину чесночный запах. Сильный восстановитель.

Источник

ГИДРИДЫ

ГИДРИДЫ, соединения водорода с металлами или менее электроотрицательными, чем водород, неметаллами. Иногда к гидридам относят соед. всех хим. элементов с водородом. Различают простые, или бинарные, гидриды, комплексные (см., напр., Алюмогидриды, Борогидриды металлов)и гидриды интерметаллич. соединений. Для большинства переходных металлов известны также комплексные соед., содержащие атом Н наряду с др. лигандами в координац. сфере металла-комплексообразователя.

Простые гидриды. Известны для всех элементов, кроме благородных газов, платиновых металлов (исключение -Pd), Ag, Au, Cd, Hg, In, Tl. В зависимости от природы связи элемента (Э) с водородом подразделяются на ковалентные, ионные (солеобразные) и металлоподобные (металлические), однако эта классификация условна, т. к. между разл. типами простых гидридов резких границ нет.

К ковалентным относят гидриды неметаллов, Al, Be, Sn, Sb. Гидриды SiH4, GeH4, SnH4, PH3, AsH3, SbH3, H2S, H2Se, H2Te (см. табл. 1) и низшие бороводороды-газы. Ковалентные гидриды обладают высокой реакц. способностью. Эффективный положит. заряд атома Э в молекуле возрастает в пределах одной группы периодич. системы с увеличением его порядкового номера. Элементы Si и Ge образуют высшие гидриды общей ф-лы ЭnН2n + 2 (п2), стабильность к-рых быстро уменьшается с увеличением числа атомов Э. Гидриды элементов подгруппы S хорошо раств. в воде (р-ры имеют кислую р-цию), подгруппы Р-незначительно. Гидриды элементов подгруппы Si взаимод. с водой с образованием ЭО2 и Н2. Все эти гидриды раств. в неполярных или малополярных орг. р-рителях. Ковалентные гидриды-сильные восстановители. Легко вступают в обменные р-ции, напр. с галогенидами металлов. При 100-300 °С (H2S ок. 400 °С) разлагаются практически необратимо до Э и Н2.

Табл. 1.-СВОЙСТВА ПРОСТЫХ КОВАЛЕНТНЫХ И ИОННЫХ ГИДРИДОВ

Гидриды подгруппы фосфора получают р-цией ЭС13 с Li[AlH4] в эфире при 25 °С; SiH4 и GeH4-взаимод. Мg2Э с водой или с В2Н6 в жидком NH3; H2S, H2Se и Н2Те-кислотным гидролизом сульфидов, селенидов или теллуридов металлов (H2S-также взаимод. Н, и S). Все упомянутые гидриды, особенно AsH3 и РН3, высокотоксичны. Гидриды Ge, Si, As используют для получения полупроводниковых материалов. См. также Мышьяка гидрид, Сероводород, Силаны, Фосфины.

Гидриды ВеН2 и А1Н3, существующие в полимерном состоянии, а также крайне нестойкий термически Ga2H6 по природе хим. связи Э—Н близки к бороводородам: для них характерен дефицит электронов, в связи с чем образование молекул или кристаллов происходит с участием двухэлектронных трехцентровых мостиковых (Э—Н—Э) и многоцентровых связей. Для этих гидридов характерны очень высокие энтальпии сгорания. Они взаимод. с водой, выделяя Н2. С донорами электронов, напр. с NR3, PR3, образуют аддукты, с В2Н6 в среде апротонных орг. р-рителей-соотв. Аl[ВН4]3 и Ве[ВН4]2. Получают гидриды Аl и Be по р-циям:

К ионным относят гидриды щелочных и щел.-зем. металлов (кроме Mg). Эти соед.-структурные аналоги соответствующих галогенидов. Представляют собой кристаллы, к-рые в расплавл. состоянии проводят электрич. ток, причем Н2 выделяется на аноде. Не раств. в орг. р-рителях, хорошо раств. в расплавах галогенидов щелочных металлов. Обладают высокой хим. активностью, бурно реагируют с О2 и влагой воздуха. Взаимод. с водой (напр., МН + Н2О -> МОН + Н2) сопровождается выделением тепла. В эфире, диглиме, ТГФ легко (особенно LiH и NaH) реагируют с галогенидами или гидридами В и А1, образуя соотв. борогидриды М[ВН4]n и алюмогидриды М[А1Н4]n. При 700-800°С восстанавливают оксиды до металлов. С СО2 дают соли муравьиной к-ты. Взаимод. с N2, напр. 3СаН2 + + N2->Ca3N2 + ЗН2.

Получают ионные гидриды обычно взаимод. Н2 с расплавом соответствующего металла под давлением. Их используют в кач-ве сильных восстановителей (напр., для получения металлов из их оксидов или галогенидов, удаления окалины с пов-стей изделий из стали и тугоплавких металлов). Многие гидриды-источники Н2, перспективное ракетное топливо. Дейтериды и тритиегидриды — возможное горючее для ядерных реакторов. См. также Лития гидрид.

Гидрид Mg по св-вам и природе хим. связи занимает промежут. положение между ковалентными и ионными гидридами; кристаллы с решеткой типа ТiO2; при высоких давлениях (

7 МПа) претерпевает полиморфные превращения. С водой и водными р-рами к-т и щелочей MgH2 взаимод. с выделением Н2, однако менее энергично, чем гидриды щелочных и др. щел.-зем. металлов. М. б. получен взаимод. Mg с Н2 при 200-250 °С и давлении 10 МПа (скорость р-ции мала) либо обменной р-цией MgHal2 с МН или М [А1Н4], где М—Li, Na, в среде орг. р-рителя. Легко образуется при гидрировании сплавов Mg, содержащих небольшие добавки РЗЭ и переходных металлов, при 150-180°С и 1-5 МПа, причем р-ция обратима. В связи с этим такие сплавы-перспективные хим. аккумуляторы Н2 для нужд малой энергетики, металлургии и хим. технологии.

К металлоподобным относят гидриды переходных металлов и РЗЭ. Формально такие соед. могут рассматриваться как фазы внедрения водорода в металл. Их образованию всегда предшествует адсорбция Н2 на пов-сти металла.

Адсорбированная молекула диссоциирует на атомы Н, в результате диффузии к-рых в кристаллич. решетку происходит образование т.н.раствора водорода в металле; процесс не сопровождается перестройкой кристаллич. решетки. При достижении определенной концентрации Н2 врастворе образуется собственно гидрид металла , как правило, стехиометрич. состава (МН3 для металлов III гр., МН2 для IV гр. и ванадия). Взаимод. Н2 с указанными металлами (кроме Pd) всегда сопровождается перестройкой кристаллич. решетки. Для описания природы хим. связи водорода с металлич. матрицей используют представление о типе связи, промежуточном между ионной и металлической; электроны водорода в большей или меньшей степени участвуют в формировании зоны проводимости гидридов. По-видимому, вклад ионной составляющей связи М + —Н — Наиб. велик для EuH2, YbH2 и тригидридов лантаноидов и минимален для PdH0,6, а также для гидридов Mn, Fe, Co, Ni, существующих при высоких давлениях Н2 и содержащих менее одного атома Н на атом металла.

Металлоподобные гидриды (см. табл. 2)-светло- и темно-серые кристаллы с металлич. блеском, устойчивые на воздухе при комнатной т-ре. С О2, водой и водяным паром реагируют медленно. М.б. получены взаимод. металла с Н2 при обычной т-ре или при нагр.; напр., TiH2 и LaH3 синтезируют при 150-200 °С. Получение гидридов стехиометрич. состава в большинстве случаев сопряжено со значит. трудностями из-за высокой чувствительности гидрироваиия к наличию примесей в металле и особенно О2 и водяных паров в Н2. Металлоподобные гидриды ограниченно применяют в кач-ве источников Н2 высокой чистоты (используемых, напр., в топливных элементах) и для поглощения Н2 из газовых смесей. Гидриды Pd-катализаторы гидрирования, изомеризации, орто- и парапревращения Н2.

Табл. 2.-СВОЙСТВА МЕТАЛЛОПОДОБНЫХ ГИДРИДОВ

Гидриды интерметаллических соединений. Содержат обычно атомы РЗЭ, Mg, Ca, Ti, Al, Fe, Co, Ni, Си. Легко образуются при взаимод. интерметаллидов даже с техн. Н2 (содержащим до 1-2% примесей О2 и водяного пара) при 25-200°С и давлениях Н2 0,1-1 МПа; скорость поглощения Н2 очень велика. Р-ции характеризуются малыми тепловыми эффектами (20-30 кДж на 1 моль Н2, для индивидуальных металлов-100-120 кДж) и не приводят к значит. изменениям в структуре исходной металлич. матрицы; в большинстве случаев происходит лишь увеличение ее объема на 10-30%. Для гидридов этого типа характерна высокая подвижность водорода и большая хим. активность (о св-вах см. также табл. 3).

Данная р-ция характерна для соед., образованных РЗЭ и Mg, а также РЗЭ и Fe, Ni или Со. Так, гидрид РЗЭ, образующийся при гидрогенолизе интерметаллида, содержащего Mg, катализирует как гидрирование Mg, так и дегидрирование MgH2 при 150-180°С: МН2 + nMg + (n + 0,5) Н2 МН3 + nMgH2

Благодаря высокому содержанию Н2, возможности значит. смещения равновесия в ту или др. сторону посредством небольших изменений т-ры и давления Н2, способности поглощать Н2 при низких т-рах и устойчивости к действию О2 и влаги воздуха, гидриды интерметаллич. соединений м.б. использованы как хим. аккумуляторы слабосвязанного водорода. Перспективно их применение как источников топлива для автономных энергосистем, напр. автомобильного транспорта (см. Водородная энергетика), а также для получения высокодисперсных металлич. порошков и катализаторов гетерог. гидрирования.

Табл. 3.-СВОЙСТВА ГИДРИДОВ ИНТЕРМЕТАЛЛИЧЕСКИХ СОЕДИНЕНИЙ

===
Исп. литература для статьи «ГИДРИДЫ» : Гидриды металлов, пер. с англ., М., 1973; Девятых ГГ., Зорин А. Д., Летучие неорганические гидриды особой чистоты, М., 1974; Антонова А. М., Морозова Р. А., Препаративная химия гидридов. К., 1976; Водород в металлах, пер. с англ., т. 2, М., 1981. К.Н. Семененко.

Страница «ГИДРИДЫ» подготовлена по материалам химической энциклопедии.

Источник

Гидриды металлов

Водородные соединения металлов

Соединения металлов с водородом — солеобразные гидриды МеНх. Это твердые вещества белого цвета с ионным строением. Устойчивые гидриды образуют активные металлы (щелочные, щелочноземельные и др.).

Способы получения

Гидриды металлов можно получить непосредственным взаимодействием активных металлов и водорода.

Например , при взаимодействии натрия с водородом образуется гидрид натрия:

2Na + H2 → 2NaH

Гидрид кальция можно получить из кальция и водорода:

Химические свойства

1. Солеобразные гидриды легко разлагаются водой .

Например , гидрид натрия в водной среде разлагается на гидроксид натрия и водород:

NaH + H2O → NaOH + H2

2. При взаимодействии с кислотами гидриды металлов образуют соль и водород.

Например , гидрид натрия реагирует с соляной кислотой с образованием хлорида натрия и водорода:

NaH + HCl → NaCl + H2

3. Солеобразные гидриды проявляют сильные восстановительные свойства и взаимодействуют с окислителями (кислород, галогены и др.)

Например , гидрид натрия окисляется кислородом:

2NaH + O2 = 2NaOH

Гидрид натрия также окисляется хлором :

NaH + Cl2 = NaCl + HCl

Источник

Гидриды — свойства, формулы и применение водородных соединений

Типы и классификация

Вещества, созданные водородом с металлами и неметаллами многобразны. В зависимости от характера полученного соединения, выделяют:

  • Простые гидриды — бинарные, в них только 2 элемента, они встречаются чаще всего.
  • Со многими переходными металлами (элементы р-подгруппы) водород образует ко́мплексные соединения. Ко́мплексные гидриды металлов (к примеру, боро- или алюмогидриды) вместо атома водорода, имеют алюмогруппу (AlH4) или борогруппу (BH4). Из них натрийборогидрид Na (BH4) и литийалюмогидрид Li (AlH4), будучи сильными восстановителями, нашли применение в лабораторной практике. Кроме этого, Na (BH4) используют для отбеливания бумаги.
  • И также есть гидриды интерметаллидов (пример: TiAl или Ti3Al, алюминид титана), в кристаллических решётках которых водород просто растворяется, аккумулируется.

У разных химических элементов строение атомов и молекул отличается. Соответственно, связи в образованных гидридах тоже неодинаковы. Классификация по виду связи определяет полученные вещества, как:

  • металлоподобные;
  • ионные (солеобразные);
  • ковалентные.

Бинарные соединения самые распространённые, есть у всех элементов. Исключения здесь металлы платиновой группы (платиноиды), Au, Ag, Hg, Ti, Cd, In, а также благородные газы. Между этими веществами нет чётко выраженных границ, деление по характеру связи для них немного условно.

Металлические гидриды

К металлическим принадлежат соединения водорода с переходными металлами и редкоземельными элементами. Это, скорее, раствор неметалла в металле, с внедрением атомов в кристаллическую решётку. Характерно для них следующее:

  • В основном такие гидриды являются бертоллидами, состав их зависит от способа получения, непостоянен, законам постоянных и кратных отношений не подчиняется.
  • В формулах для них указывают предельное содержание водорода.
  • В отличие от прочих, они сохраняют исходную металлическую решётку.
  • Их вид и физические свойства соответствуют металлам, с которыми они образованы.
  • Имеют характе́рный металлический блеск, взаимодействуют с H2O (в жидком или газообразном состоянии), кислородом, при нормальных условиях, но медленно.
  • Как и металлы, обладают значительной теплопроводностью и проводимостью.
  • При нагревании распадаются на водород и исходный металл.

Образуются в процессе адсорбции водорода на металлической поверхности, диссоциации H2 и диффузного проникновения атомов в металлическую решётку. Поглощение обратимо, но химические связи весьма крепкие.

От металлоподобных, через гидриды меди (CuH, водородистая медь), цинка, ZnH2, водородистый цинк и им подобных, осуществляется переход к полимерам.

Это химические вещества со сложной структурой, в которой присутствуют цепи и полиэдры. Твёрдые, устойчивые, с кристаллическим строением (полимерные гидриды лёгких металлов стабильнее всего), данные соединения распадаются при нагреве на составляющие элементы.

От них, через гидриды бора и галлия — к водородным соединениям с неметаллами. В них водород имеет степень окисления +1.

Соединения с ионным типом связи

Их образует водород с металлами 1А и 2А групп, кроме Mg, а также с Al. Они отчасти показывают свойства соответствующих галогенидов, откуда и появилось второе наименование — солеобразные.

Это химические соединения, такие как гидрид натрия (NaH), кальция (CaH2), лития, с формулой LiH, другие. Для них характерно:

  • Получают при высокой температуре и под давлением.
  • В этих соединениях, проявляющих, как правило, щелочные свойства, у водорода степень окисления -1. С металлами 1А и 2А групп, такими, как Na, Li, Be, K, Rb, Sr он выступает окислителем, подобно галогенам. Например, гидрид натрия, с химической формулой NaH — в этом соединении ион водорода имеет отрицательный заряд.
  • Это кристаллические вещества белого цвета, с ионной решёткой, структура подобна строению соответствующего галогенида.
  • При нормальных условиях устойчивы.
  • Распад на металл и водород при нагреве, минуя этап плавления (исключением является LiH, его температура плавления 688 градусов Цельсия).
  • В расплаве — хорошие проводники, при этом на аноде будет выделяться H2.
  • Вспыхивают при растирании на воздухе.
  • Все являются сильными восстановителями. Применяются для получения чистых металлов из солей и оксидов, для удаления окалины, коррозии.
  • Реагируют с оксидом углерода, формируют соли муравьиной кислоты (формиаты).
  • Как и соли, могут участвовать в обменных реакциях, гидролизе.

Солеобразными бывают не только бинарные (простые) соединения водорода. Дигидриды, образуемые добавлением групп бора (BH4) или алюминия (AlH4) к металлу, также имеют ионный тип связи.

Окислительная активность водорода небольшая по сравнению с галогенами. Дополнительный электрон он отдаёт с трудом, при нагреве (реакция проходит с поглощением тепла). Это и обусловливает различие между свойствами ионных гидридов и галогенидов.

По химической природе такие соединения ведут себя как основные. Ионные гидриды обладают высокой химической активностью. Они бурно реагируют с кислородом и H2O в парообразном состоянии.

Но выраженный ионный характер — свойство, проявляемое соединениями кальция, натрия, щелочных и щёлочноземельных элементов. На них проще всего и нагляднее можно показать химию взаимодействий этих веществ:

  • С водой: 2NaH + H2O = 2NaOH + H2O.
  • С кислородом: NaH + O2 = NaO + H2O.
  • Реакция разложения: CaH2 = Ca + H2.
  • С оксидами углерода: NaH + CO2 = NaCOOH.
  • Кремния: 4NaH + 3SiO2 = 2Na2SiO3 + Si + 2H2.
  • Металлов: 4NaH + Fe3O4 = 4NaOH + 3Fe.
  • Восстановление: 2NaH + 2SO2 = Na2SO4 + H2S.
  • С аммиаком: NaH + NH3 = NaNH2 + H2.
  • С кислотами: 2NaH + H2SO4 = Na2SO4 + 2H2.
  • Со спиртами: KH + HO-R = KOR + H2.

По свойствам и природе связи промежуточное положение между ионными и ковалентными занимает гидрид магния, с формулой MgH2.

Соли и оксиды калия, кальция, меди и других щелочных и щёлочноземельных металлов образуют с гидридом кислорода (водой) ещё один вид соединений — дигидраты. Это соли серной кислоты (сульфаты), галогениды, оксиды плюс 2 присоединённых молекулы H2O. Формула алебастра — Ca5O4 плюс 2H2O, гипс — CaSO4 плюс 2H2O, в природе они не редкость.

Гидросульфид натрия, NaHS, образует не только дигидрат, NaHS плюс 2H2O, но и тригидрат, с присоединением 3H2O.

Когда связь ковалентна

Это соединения, в которых степень окисления водорода +1, как правило, газы, летучие жидкости. Их водород даёт с неметаллами, а также с германием, алюминием, бериллием, оловом, мышьяком, сурьмой — элементами 4, 5, 6 и 7 групп периодической системы. И также ковалентную связь имеют соединения водорода и бора.

Это могут быть вещества простые, бинарные, такие как метан (CH4), силан (формула SiH4). Сложные тоже имеются, с длинными цепями, многоатомные молекулы — они образуются водородом с кремнием, бором, германием.

Многие из них неустойчивы, так гидрид олова (SnH4) распадается уже при комнатной температуре, а гидрид свинца недолго существует и при отрицательных температурах. Самый простой гидрид бора не существует в природных условиях вообще.

Отличительные свойства:

  • Все сильные восстановители, степень окисления водорода +1.
  • Проявляют кислотные, а также амфотерные свойства.
  • Агрегатное состояние — газ или летучая жидкость, исключения тут гидрид кислорода (вода), азота, фтороводород (плавиковая кислота), те, в которых молекулы полярны и возникает водородная связь. Последние существуют, как нелетучая жидкость или в твёрдом состоянии.
  • Электронодефицитные виды, получаемые с элементами главной подгруппы 3 группы, например, гидрид алюминия AlH3 или бериллия, химическая формула BeH2, очень активны и образуют многоатомные, длинные полимерные цепи, с больши́м весом. Такие полимеры — твёрдые вещества.
  • При нагреве легко и практически необратимо, разлагаются на элемент и водород H2. Требуется температура от 100 до 300 градусов по Цельсию (для гидрида серы H2S — порядка 400 градусов).
  • Чаще всего они имеют высокую токсичность.
  • Характерна высокая химическая активность, реакционная способность.
  • Получить можно непосредственным взаимодействием элементов, разложением металлических соединений водой, кислотой, восстановлением галогенидов гидридами бора, алюминия, щелочных металлов.
  • Высшие гидриды германия, кремния, с общей химической формулой EnH2n+2 — это полимеры, их стабильность тем ниже, чем больше атомный вес и количество атомов элемента.
  • Принадлежащие к s-подгруппе хорошо растворяются в воде и проявляют кислотные свойства. Прочие — в незначительной мере, свойства у них основные. Все хорошо растворимы в неполярных органических растворителях.
  • При взаимодействии с водой (H2O), выделяется чистый водород (H2) и оксид, с общей химической формулой EO2.

Тяжёлые элементы дают соединения с небольшой устойчивостью.

За счёт водородных связей и способности к донорно-акцепторному взаимодействию, вода (H2O), плавиковая кислота (HF), аммиака (NH3), а частично HCl и H2S, хорошие растворители.

Интерметаллические соединения

Химические вещества, образованные двумя или более металлов, такие как FeTi, Ca2Ru, Mg2Ni — это интерметаллические соединения. Они хорошо поглощают водород и соединяясь с ним дают гидриды-интерметаллиды.

Содержат атомы железа, магния, меди, кальция, титана, алюминия, редкоземельные элементы. Их легко получить даже с H2 нехимическим (для технических нужд, до 2% примесей). Применяют для хранения водорода и аккумуляторных батарей.

У гидридов много областей применения. Особенно широко используют NaH. С его помощью удаляют термическую окалину с металлов, производят добавки, повышающие октановое число бензина, катализаторы полимеризации. Он необходим при производстве красителей, моющих средств, в качестве мощного восстановителя применяется в металлургии.

В органической химии комплексные водородные соединения применяют уже более 50 лет, для получения особо чистых химических элементов. В химии алкалоидов также широко используют комплексные гидриды металлов. Без них не обходится производство металлокерамики, дегазаторов, многих фармакологических средств.

Азот с водородом образует аммиак, кислород — воду, сера даёт сероводород, в природе постоянно идёт синтез подобных веществ. С миром химии человек пересекается постоянно. Поэтому знания о наиболее распространёных веществах принесут пользу каждому.

Источник

Читайте также:  Как выглядит резак по металлу
Поделиться с друзьями
Металл и камни