Температура при которой ртуть становится твердой

Температура плавления ртути. Элемент ртуть

Все химические элементы таблицы Менделеева условно разделяются диагональю B — At на металлы и неметаллы. При этом последние в меньшинстве, располагаются выше и правее границы. Металлы же в явном количественном преимуществе, их из известных 118 элементов больше 80.

Все они обладают сходными физическими свойствами, объединяются агрегатным состоянием. Однако есть и исключение — элемент ртуть. О ней и поговорим подробнее.

Ртуть: положение в периодической системе

Данный элемент занимает свою ячейку в таблице под номером 80. При этом располагается во второй группе, побочной подгруппе, шестом большом периоде. Имеет атомную массу, равную 200,59. Существует в виде семи устойчивых изотопов: 196, 198, 199, 200, 201, 202, 204.

Относится к элементам d-семейства, однако не переходным, так как последние валентные электроны заполняют s-орбиталь. Ртуть входит в подгруппу металлов цинка, вместе с кадмием и коперницием.

Общая характеристика элемента

Химические элементы таблицы Менделеева имеют строго упорядоченное расположение, и каждый обладает своей электронной конфигурацией атома, говорящей о его свойствах. Ртуть не исключение. Строение ее внешней и предвнешней электронной оболочки следующее: 5s 2 5p 6 5d 10 6s 2 .

Возможные степени окисления: +1, +2. Оксид и гидроксид ртути — слабо основные, иногда амфотерные по характеру соединения. Химический символ элемента №80 — Hg, латинское произношение «гидраргирум». Русское название происходит от праславянского языка, на котором оно переводилось как «катиться». У других народов произношение и название разное. Часто сам элемент и образуемые им простые и сложные вещества называют меркуратами, меркурием. Такое название происходит из древних времен, когда сопоставляли Hg (элемент) с серебром, придавали ему второе значение после золота. Солнце — символ аурум Au, Меркурий — символ гидраргирум Hg.

У древних народов было поверье, что существует семь основных металлов, среди которых ртуть. Группа из них находила отражение в небесных телах. То есть золото ассоциировалось с Солнцем, железо — с Марсом, ртуть — с Меркурием и так далее.

История открытия

О ртути было известно примерно за 1500 лет до нашей эры. Уже тогда ее описывали как «жидкое серебро», подвижный, необычный и загадочный металл. Добывать ее тоже научились еще в древности.

Конечно, изучить ее свойства возможности не было, ведь еще не была сформирована как таковая химия. Ртуть окутывали пеленой тайны и магии, считали необычным веществом, близким к серебру и способным превратиться в золото, если сделать ее твердой. Однако способов получить чистую ртуть в твердом агрегатном состоянии не было, и алхимические изыскания не увенчались успехом.

Основные страны, где с самой древности применялась и добывалась ртуть, это:

Однако получить данный металл именно в чистом виде удалось только в XVIII веке, это сделал шведский химик Брандт. При этом ни им, ни до этого момента так и не были приведены доказательства металличности вещества. Данный вопрос прояснили М. В. Ломоносов и Браун. Именно эти ученые первыми сумели заморозить ртуть и таким образом подтвердить, что для нее характерны все свойства металлов — блеск, электропроводность, ковкость и пластичность, металлическая кристаллическая решетка.

На сегодняшний день получены самые разные соединения ртути, она используется в разных областях технического производства.

Вещество ртуть

Как простое вещество представляет собой жидкость (при нормальных условиях) серебристо-белую, подвижную, легколетучую. Типичный пример, где используется жидкая ртуть в чистом виде, — это термометры, градусники для измерения температуры.

Если перевести ртуть в твердое состояние, то она будет представлять собой полупрозрачные кристаллы, не имеющие запаха. Пары этого вещества бесцветные, очень ядовитые.

Физические свойства

По своим физическим свойствам данный металл — это единственный представитель, который при обычных условиях способен существовать в виде жидкости. По всем остальным свойствам он полностью подходит под общие характеристики остальных представителей категории.

Основные свойства следующие.

  1. Агрегатное состояние: обычные условия — жидкость, твердые кристаллы — не выше 352 о С, пары — свыше 79 К.
  2. Растворяется в бензоле, диоксане, кристаллы в воде. Обладает способностью не смачивать стекло.
  3. Обладает диамагнитными свойствами.
  4. Теплопроводна.

Плавление ртути происходит при отрицательной температуре -38,83 о С. Поэтому данное вещество относится к группе взрывоопасных при нагревании. Внутренний запас энергии соединения при этом увеличивается в несколько раз.

Кипение ртути начинается при температуре 356,73 о С. В этот момент она начинает переходить в парообразное состояние, которое представляет собой совершенно невидимые глазом молекулы, соединенные ковалентной неполярной связью.

Температура плавления ртути показывает, что свойства этого металла явно необычные. Данное вещество начинает испаряться, переходя в невидимые молекулы газообразного состояния, уже при обычной комнатной температуре, что и делает ее особенно опасной для здоровья человека и животных.

Химические свойства

Известны следующие группы соединений на основе ртути в разных степенях окисления:

  • сульфаты, сульфиды;
  • хлориды;
  • нитраты;
  • гидроксиды;
  • оксиды;
  • комплексные соединения;
  • металлоорганические вещества;
  • интерметаллические;
  • сплавы с другими металлами — амальгамы.

Температура плавления ртути позволяет ей образовывать как жидкие, так и твердые амальгамы. В таких сплавах металлы лишаются своей активности, становясь более инертными.

Реакция взаимодействия ртути с кислородом возможна только при достаточно высокой температуре, несмотря на сильную окислительную способность неметалла. При условиях свыше 380 о С в результате такого синтеза образуется оксид металла со степенью окисления последнего +2.

С кислотами, щелочами, неметаллами в свободном виде металл не вступает в химическое взаимодействие, оставаясь в жидком состоянии.

С галогенами реагирует достаточно медленно и только на холоде, что и подтверждает температура плавления ртути. Хорошим окислителем для нее является перманганат калия.

Нахождение в природе

Содержится в земной коре, Мировом океане, рудах и минералах. Если говорить об общем процентном количестве ртути в земных недрах, то это примерно 0,000001%. В целом можно сказать, что данный элемент рассеянный. Основные минералы и руды, в состав которых входит этот металл, следующие:

  • киноварь;
  • кварц;
  • халцедон;
  • слюда;
  • карбонаты;
  • свинцово-цинковые руды.

В природе ртуть все время совершает круговорот и принимает участие в обменных процессах всех оболочек Земли.

Получение ртути

Основной способ получения — это обработка минерала киноварь. Также возможен металлургический способ при помощи восстановителей. Когда используют первый метод, то минерал подвергается жесткому обжигу в кислороде. В результате образуются пары металла. Так как температура плавления ртути очень низкая, а кипения, напротив, высокая, то сбор и конденсация паров при получении обжигом трудностей не вызывают. Данный способ обработки сульфида ртути применяли еще в древности для получения металла в чистом виде.

Читайте также:  Что стали они частью заговора

Второй метод основан на извлечении ртути также из сульфида при помощи использования сильного восстановителя. Такого, как железо. Сбор продукта осуществляется тем же способом, что и в предыдущем случае.

Биологическое воздействие на живые организмы

Температура ртути нужна достаточно низкая, чтобы перейти в парообразное состояние. Данный процесс начинается уже при 25 о С, то есть при обычной комнатной температуре. В этом случае нахождение живых организмов в помещении становится опасным для здоровья.

Так, металл способен проникать внутрь существ через:

  • кожные покровы, неповрежденные, совершенно целые;
  • слизистые оболочки;
  • дыхательные пути;
  • пищеварительные органы.

Оказавшись внутри, пары ртути включаются в общий кровоток, а затем вступают в синтезы белковых и других молекул, образуя с ними соединения. Так происходит накопление вредного металла в печени и костях. Из мест хранения металл снова может включаться в обменные процессы, синтезы и распады, вызывая медленную интоксикацию организма, сопровождающуюся самыми тяжелыми последствиями.

Выводится из органов достаточно медленно и под действием катализаторов, адсорбентов. Например, молока. Основные жидкости, через которые осуществляется вывод металла в окружающую среду:

  • слюна;
  • желчь;
  • моча;
  • продукты желудочно-кишечного тракта.

Различают две основные формы отравления данным веществом: острая и хроническая. Каждая имеет свои особенности и проявления.

Симптоматика и лечение

Острая форма характерна для случаев, когда происходит разлив ртути на производствах, то есть когда единовременно происходит огромный выброс вещества в атмосферу. В таких ситуациях у незащищенных людей начинается резкое ухудшение самочувствия, то есть отравление. Симптомы следующие:

  1. Воспаляются органы дыхания, легкие, слизистые оболочки полости рта и горла.
  2. Повышается температура тела.
  3. Образуются язвы на деснах, они кровоточат, опухают и становятся крайне чувствительными. Иногда образуется ртутная кайма.
  4. Наблюдается атрофия печени и почек.
  5. Озноб, тошнота и рвота, головокружение.
  6. Нервная система страдает очень сильно — нарушается речь и координация движений, наблюдается тремор конечностей.
  7. Отравление сопровождается головными болями и диареей с кровяными включениями.

Если же поражение парами ртути происходило постепенно, то заболевание примет хронический характер. В этом случае проявления будут не такими резкими, однако ухудшение самочувствия будет накапливаться ежедневно, принимая все более масштабные обороты.

  1. Тремор конечностей.
  2. Заболевания полости рта (гингивиты, стоматиты и прочие).
  3. Гипертония и тахикардия.
  4. Потливость.
  5. Нервное возбуждение.
  6. Головные боли.
  7. В тяжелых случаях могут быть спровоцированы серьезные психические нарушения, вплоть до шизофрении.

Все эти последствия могут наступить даже из-за незначительного выброса ртути в атмосферу. Если вовремя не провести демеркуризацию помещения, то можно очень сильно навредить здоровью.

Лечение в этих случаях обычно проводится следующими препаратами:

Использование человеком

Самое распространенное место использования и хранения металлической ртути — это градусники и термометры. В одном таком оборудовании может находиться до 3 г металла. Помимо этого, можно выделить еще несколько областей деятельности человека, в которых ртуть используется достаточно широко:

  • медицина (каломель, меркузал, промеран, многие антисептики);
  • техническая деятельность — источники тока, лампы накаливания, насосы, барометры, детонатор и так далее;
  • металлургия — напыление зеркал, украшение амальгамами золота и серебра, получение сплавов металлов, чистых веществ;
  • химическая промышленность;
  • сельское хозяйство.

В настоящее время из-за получения более безопасных и удобных веществ ртуть практически вытеснена из медицины.

Источник

РТУТЬ

РТУТЬ – химический элемент II группы периодической системы элементов, атомный номер 80, относительная атомная масса 200,6.

Это единственный жидкий при комнатной температуре металл, замерзает лишь при сильном морозе. Это было обнаружено лишь в 18 в. – в 1736 в Иркутске при сильном морозе «замерзание» термометра наблюдал французский астроном и географ Ж.-Н.Делиль. (Он был приглашен в Петербург на место директора астрономической обсерватории при основании Российской Академии наук в 1725 и прожил в России до 1747. В Сибирь же он ездил для наблюдения прохождения Меркурия перед диском Солнца и для определения географического положения некоторых пунктов.) Искусственно же заморозить ртуть с помощью охлаждающей смеси (из льда и концентрированной азотной кислоты) удалось лишь в 1759 другому петербургскому академику И.А.Брауну (его пригласили в Российскую академию в 1746).

Ртуть – один из семи металлов, известных с древнейших времен. Несмотря на то, что ртуть относится к рассеянным элементам и в природе ее очень мало (7·10 –6 % в земной коре, примерно столько же, сколько и серебра), она встречается в свободном состоянии в виде вкраплений в горные породы. Кроме того, ее очень легко выделить из основного минерала – сульфида (киновари), при обжиге которого идет реакция HgS + O2 ® Hg + SO2. Пары ртути легко конденсируются в блестящую, как серебро, жидкость. Ее плотность настолько велика (13,6 г/см 3 ), что ведро со ртутью обычный человек даже не оторвет от пола.

Необычные свойства жидкого металла удивляли еще древних. Греческий врач Диоскорид, живший в I веке н.э., дал ей название hydrargyros (от «хюдор» – вода и «аргирос» – серебро); отсюда и латинское название hydrargirum. Близкое по значению название – Quecksilber (т.е. «подвижное серебро») сохранилось в немецком языке (интересно, что quecksilberig по-немецки означает «непоседливый»). Аналогичным было и старинное английское название ртути – quicksilver («быстрое серебро»). По-болгарски ртуть – живак: действительно, шарики ртути блестят, как серебро и очень быстро «бегают» – как живые. Современное английское (mercury) и французское (mercure) названия ртути произошли от имени латинского бога торговли Меркурия. Меркурий был также вестником богов, и его обычно изображали с крылышками на сандалиях или на шлеме. Вероятно, по понятиям древних, бог Меркурий бегал так же быстро, как переливается ртуть. Ртути соответствовала планета Меркурий, которая быстрее всех передвигается по небосводу.

О ртути знали древние индийцы, китайцы, египтяне. Ртуть и ее соединения использовались в медицине (в том числе и для лечения. заворота кишок), из киновари делали красные краски. Но были и довольно необычные «применения». Так, в середине 10 в. мавританский король Абд ар-Рахман III построил дворец близ Кордовы в Испании, во внутреннем дворике которого был фонтан с непрерывно льющейся струей ртути (до сих пор испанские месторождения ртути – самые богатые в мире, по ее добыче Испания занимает ведущее положение). Еще оригинальнее был другой король, имя которого история не сохранила: он спал на матрасе, который плавал в бассейне из. ртути! В то время о сильной ядовитости ртути и ее соединений, видимо, не подозревали. Причем ртутью травились не только короли, но и многие ученые, в числе которых был Исаак Ньютон (одно время он очень интересовался алхимией), да и в наши дни небрежное обращение со ртутью нередко приводит к печальным последствиям.

Читайте также:  Сталь родий что это

Сейчас ядовитость ртути общеизвестна. Из всех ее соединений особенно опасны легкорастворимые соли, например, хлорид HgCl2 (сулема – раньше ее широко использовали как антисептик); смертельная доза сулемы при попадании в желудок составляет от 0,2 до 0,5 г. Опасна и металлическая ртуть, особенно при регулярном ее поступлении в организм. Но это – малоактивный металл, с желудочным соком не реагирует и выводится из желудка и кишечника почти полностью. В чем же ее опасность? Оказывается, ртуть легко испаряется, а ее пары, попадая в легкие, полностью задерживаются там и вызывают впоследствии отравление организма, хотя и не такое быстрое, как соли ртути. При этом происходят специфические биохимические реакции, окисляющие ртуть. Ионы ртути прежде всего реагируют с SH-группами белковых молекул, среди которых – важнейшие для организма ферменты. Ионы Hg 2+ реагируют также с белковыми группами –СООН и NH2 с образованием прочных комплексов – металлопротеидов. А циркулирующие в крови нейтральные атомы ртути, попавшие туда из легких, также образуют соединения с белковыми молекулами. Нарушение нормальной работы белков-ферментов приводит к глубоким нарушениям в организме, и прежде всего – в центральной нервной системе, а также в почках.

Другой возможный источник отравления – органические производные ртути. Эти чрезвычайно ядовитые производные образуются в результате так называемого биологического метилирования. Оно происходит под действием микроорганизмов, например, плесени и характерно не только для ртути, но и для мышьяка, селена, теллура. Ртуть и ее неорганические соединения, которые широко используются на многих производствах, со сточными водами попадают на дно водоемов. Обитающие там микроорганизмы превращают их в диметилртуть (CH3)2Hg, которая относится к числу наиболее ядовитых веществ. Диметилртуть далее легко переходит в водорастворимый катион HgCH3 + . Оба вещества поглощаются водными организмами и попадают в пищевую цепочку; сначала они накапливаются в растениях и мельчайших организмах, затем – в рыбах. Метилированная ртуть очень медленно выводится из организма – месяцами у людей и годами у рыб. Поэтому концентрация ртути вдоль биологической цепочки непрерывно увеличивается, так что в рыбах-хищниках, которые питаются другими рыбами, ртути может оказаться в тысячи раз больше, чем в воде, из которой она выловлена. Именно этим объясняется так называемая «болезнь Минамата» – по названию приморского города в Японии, в котором за несколько лет от отравления ртутью умерло 50 человек и многие родившиеся дети имели врожденные уродства. Опасность оказалась так велика, что в некоторых водоемах пришлось приостановить лов рыбы – настолько она оказалась «нашпигованной» ртутью. Страдают от поедания отравленной рыбы не только люди, но и рыбы, тюлени.

Для ртутного отравления характерны головная боль, покраснение и набухание десен, появление на них характерной темной каймы сульфида ртути, набухание лимфатических и слюнных желез, расстройства пищеварения. При легком отравлении через 2–3 недели нарушенные функции восстанавливаются по мере выведения ртути из организма (эту работу выполняют в основном почки, железы толстых кишок и слюнные железы).

Если поступление ртути в организм происходит малыми дозами, но в течение длительного времени, наступает хроническое отравление. Для него характерны прежде всего повышенная утомляемость, слабость, сонливость, апатия, головные боли и головокружения. Как видно, эти симптомы очень легко спутать с проявлением других заболеваний или даже с недостатком витаминов. Поэтому распознать такое отравление непросто. Из других проявлений ртутного отравления следует отметить психические расстройства. Раньше их называли «болезнью шляпников», так как для размягчения шерсти, из которой изготовляли фетровые шляпы, использовали нитрат ртути Hg(NO3)2. Это расстройство описано в книге Льюиса Кэррола Алиса в стране чудес на примере одного из персонажей – Сумасшедшего Шляпника.

Опасность хронического отравления ртутью возможна во всех помещениях, в которых металлическая ртуть находится в соприкосновении с воздухом, даже если концентрация ее паров очень мала (предельно допустимой в рабочем помещении считается концентрация паров 0,01 мг/м 3 , а в атмосферном воздухе – в 30 раз меньше). Даже профессиональные химики бывают удивлены, узнав с какой скоростью испаряется ртуть и сколько ее может накопиться в воздухе. При комнатной температуре давление паров над ртутью равно 0,0012 мм ртутного столба – в миллион раз меньше атмосферного. Но и такое малое давление означает, что в каждом кубическом сантиметре воздуха содержится 30 триллионов атомов ртути или 13,4 мг/м 3 , т.е. в 1300 раз больше, чем предельно допустимая концентрация! А так как силы притяжения между атомами ртути малы (именно поэтому этот металл жидкий), испаряется ртуть довольно быстро. Отсутствие цвета и запаха у паров ртути приводит к тому, что многие недооценивают опасность. Чтобы сделать этот факт очевидным, провели такой опыт. В чашечку налили немного ртути, так что образовалась лужица диаметром около 2 см. Эту лужицу присыпали специальным порошком. Если такой порошок осветить невидимыми ультрафиолетовыми лучами, он начинает ярко светиться. Если под порошком находится ртуть, на ярком фоне видны темные движущиеся «облачка». Особенно отчетливо это явление наблюдается, когда в комнате имеется небольшое движение воздуха. Объясняется опыт просто: ртуть в чашечке непрерывно испаряется, и ее пары свободно проходят сквозь тонкий слой флуоресцирующего порошка. Пары ртути обладают способностью сильно поглощать ультрафиолетовое излучение. Поэтому в тех местах, где над чашечкой поднимались невидимые «ртутные струйки», ультрафиолетовые лучи задерживались в воздухе и не доходили до порошка. В этих местах и были видны темные пятна.

В последующем этот опыт усовершенствовали так, что его могли наблюдать сразу много зрителей в большой аудитории. Ртуть на этот раз находилась в обычной склянке без пробки, откуда ее пары свободно выходили наружу. За склянкой поставили экран, покрытый таким же порошком, а перед ней – ультрафиолетовую лампу. При включении лампы экран начал ярко светиться, и на светлом фоне отчетливо были видны движущиеся тени. Это означало, что в этих местах ультрафиолетовые лучи задержались выходящими из склянки парами ртути и не смогли достичь экрана.

Если открытую поверхность ртути покрыть водой, скорость ее испарения очень сильно снижается. Происходит это потому, что ртуть очень плохо растворяется в воде: в отсутствие воздуха в одном литре воды может раствориться только 0,06 мг ртути. Соответственно очень сильно должна уменьшиться и концентрация паров ртути в воздухе помещений при условии их вентиляции. Это было проверено на заводе по переработке ртути. В одном из опытов 100 кг ртути налили в два одинаковых лотка, один из них залили слоем воды толщиной около 2 см и оставили на ночь. На утро замерили концентрацию паров ртути в 10 см над каждым лотком. Там, где ртуть залили водой, ее было в воздухе 0,05 мг/м 3 – чуть больше чем в остальном помещении (0,03 мг/м 3 ). А над свободной поверхностью ртути прибор зашкалил.

Читайте также:  Что делать если недостаточно железа

Но если ртуть настолько ядовита, почему ее десятилетиями использовали зубные врачи для изготовления пломб? Специальный ртутный сплав (амальгаму) изготовляли непосредственно перед тем, как поставить пломбу, добавляя ртуть к сплаву, содержащему 70% серебра, 26% олова и немного меди и цинка, после чего смесь тщательно растирали. В готовой пломбе после отжима излишка жидкой ртути ее оставалось примерно 40%. После затвердевания пломба состояла из трех различных кристаллических фаз, состав которых приблизительно соответствует формулам Ag2Hg3, Ag3Sn и SnxHg, где х принимает значения от 7 до 9. Эти интерметаллические соединения при температуре человеческого тела твердые, нелетучие и совершенно безопасные.

А вот лампы дневного света представляют определенную опасность: каждая из них содержит до 0,2 г жидкой ртути, которая, если трубку разбить, начнет испаряться и загрязнять воздух.

Возбужденные атомы ртути излучают свет с длинами волн в основном 254, 303, 313 и 365 нм (УФ-область), 405 нм (фиолетовые лучи), 436 нм (синие), 546 нм (зеленые) и 579 нм (желтые). Спектр излучения светящихся паров ртути зависит от давления в колбе. Когда оно малó, ртутная лампа остается холодной, горит бледно-синим светом, почти все ее излучение сосредоточено в невидимой линии 254 нм. Так светят бактерицидные лампы. Если повысить давление паров, линия 254 нм практически исчезнет (это излучение будут поглощать пары самой ртути), а интенсивность других линий заметно возрастет, сами линии расширятся, а между ними появится ощутимый «фон», который становится преобладающим в ксеноновых лампах сверхвысокого давления (примерно 3 атм), которые заполнены парами ртути и ксеноном. Одна такая лампа мощностью 10 кВт может осветить, например, большую привокзальную площадь.

Ртутные лампы среднего и высокого давления (10–100 кПа или 0,1–1 атм) часто называют «кварцевыми», потому что их корпус изготовлен из тугоплавкого кварцевого стекла, пропускающего УФ-лучи. Их применяют для физиотерапии и искусственного загара. Излучение ртутных ламп сильно отличается от солнечного. Когда в центре Москвы появились первые ртутные лампы, их свет был очень неестественным – зеленовато-синеватым. Он сильно искажал цвета: губы прохожих казались черными. Чтобы приблизить излучение паров ртути к естественному свету, ртутные лампы низкого давления изготовляют в виде трубок, на внутренние стенки которых нанесен специальный люминофор (см. ЛЮМИНЕСЦЕНЦИЯ. СВЕЧЕНИЕ ВЕЩЕСТВ).

Дома ртуть может оказаться в мелодичном дверном звонке, в лампах дневного света, в медицинском термометре или тонометре старого типа. Пролитую в помещении ртуть надо собирать самым тщательным образом. Особенно много паров образуется в том случае, если ртуть рассыпалась на множество мельчайших капелек, которые забились в различные щели, например, между плитками паркета. Поэтому все эти капельки необходимо собрать. Лучше всего это сделать с помощью оловянной фольги, к которой ртуть легко прилипает, или же промытой азотной кислотой медной проволочкой. А те места, где ртуть еще могла бы задержаться, заливают 20%-ным раствором хлорного железа. Хорошая профилактическая мера против отравления парами ртути – тщательно и регулярно, в течение многих недель или даже месяцев, проветривать помещение, где была пролита ртуть.

Ртуть обладает многими интересными особенностями, которые раньше использовали для эффектных лекционных опытов. Например, она хорошо растворяется в расплавленном белом фосфоре (он плавится при 44° С), а при охлаждении этого необычного раствора ртуть выделяется в неизменном состоянии. Еще одна красивая демонстрация была связана с тем, что при охлаждении ртуть затвердевает, а ее твердые кусочки при соприкосновении слипаются так же легко, как и жидкие ее капли. Если же охладить ртуть очень сильно, например, жидким азотом, до температуры – 196° С, вставив в нее предварительно палочку, то после замерзания ртути получался своеобразный молоток, которым лектор легко забивал гвоздь в доску. Конечно, всегда оставался риск, что от такого «молотка» отколются маленькие кусочки, которые потом доставят массу неприятностей. Другой опыт был связан с «лишением» ртути ее способности с легкостью разбиваться на мельчайшие блестящие шарики. Для этого ртуть подвергали действию очень малых количеств озона. При этом ртуть теряла свою подвижность и налипала тонкой пленкой на содержащий ее сосуд. Сейчас, когда ядовитость ртути хорошо изучена, такие опыты не проводят.

А вот избавиться от ртути в термометрах пока не удается. Во-первых, она позволяет проводить измерения в большом температурном интервале: замерзает при –38,9° С, кипит при 356,7° С, а путем повышения давления над ртутью верхний предел легко поднять еще на сотни градусов. Во-вторых, чистая ртуть (а очистить ее сравнительно легко) не смачивает стекло, поэтому отсчеты температуры получаются более точными. В-третьих, и это очень важно, с повышением температуры ртуть расширяется более равномерно, чем другие жидкости. Наконец, у ртути малая удельная теплоемкость – нагреть ее почти в 30 раз легче, чем воду. Так что ртутный термометр, помимо прочих достоинств, обладает и малой инерционностью.

Высокая плотность ртути позволяет в обычном медицинском термометре «держать температуру» после ее измерения. Для этого используется принцип разрывания столбика ртути в тонкой перетяжке капилляра между резервуаром и шкалой. В отличие от обычных термометров, при измерении температуры тела ртуть поступает в капилляр не равномерно, а скачками, «выстреливая» периодически мельчайшими капельками через сужение в капилляре (это хорошо видно через сильную лупу). Заставляет ее это делать повышение давления в резервуаре при подъеме температуры – иначе ртуть через перетяжку не пройдет. Когда резервуар начинает охлаждаться, столбик ртути разрывается и часть ее остается в капилляре – ровно столько, сколько ее там было у больного под мышкой (или в другом месте, как это принято в разных странах). Резко встряхивая термометр после измерения температуры, мы сообщаем тяжелому столбику ртути ускорение, в десятки раз превышающее ускорение свободного падения. Развиваемое при этом давление «загоняет» ртуть обратно в резервуар.

Несмотря на ядовитость, полностью избавиться от применения ртути и ее соединений пока не удается, и во всем мире ежегодно добывают тысячи тонн этого металла. Ртуть находит очень широкое применение во многих производствах. Металлическую ртуть используют в электрических контактах – переключателях; для заполнения вакуумных насосов, выпрямителей, барометров, термометров, в производстве хлора и едкого натра (ртутные катоды); при изготовлении сухих элементов (в них содержится оксид ртути, либо амальгама цинка и кадмия).

Для многих целей используется электрический разряд в парах ртути (ртутные лампы).

Источник

Поделиться с друзьями
Металл и камни