- Золото, свойства атома, химические и физические свойства
- Золото, свойства атома, химические и физические свойства.
- Атом и молекула золота. Формула золота. Строение атома золота:
- Изотопы и модификации золота:
- Свойства золота (таблица): температура, плотность, давление и пр.:
- Физические и химические свойства золота, проба золота
Золото, свойства атома, химические и физические свойства
Золото, свойства атома, химические и физические свойства.
196,966569(4) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 1
Золото — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 79. Расположен в 11-й группе (по старой классификации — побочной подгруппе первой группы), шестом периоде периодической системы.
Атом и молекула золота. Формула золота. Строение атома золота:
Золото (лат. Aurum) – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Au и атомным номером 79. Расположен в 11-й группе (по старой классификации – побочной подгруппе первой группы), шестом периоде периодической системы.
Золото – металл. Относится к группе переходных металлов, а также к драгоценным металлам и металлам платиновой группы.
Золото обозначается символом Au.
Как простое вещество золото при нормальных условиях представляет собой мягкий, тяжёлый металл жёлтого цвета.
Молекула золота одноатомна.
Химическая формула золота Au.
Электронная конфигурация атома золота 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 1 . Потенциал ионизации (первый электрон) атома золота равен 890,13 кДж/моль (9,225554(4) эВ).
Строение атома золота. Атом золота состоит из положительно заряженного ядра (+79), вокруг которого по шести оболочкам движется 79 электронов. При этом 78 электронов находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку золото расположен в шестом периоде, оболочек всего шесть. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлены s- и р-орбиталями. Третья и пятая – внутренние оболочки представлены s-, р- и d-орбиталями. Четвертая – внутренняя оболочка представлены s-, р-, d- и f-орбиталями. Шестая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома золота на 6s-орбитали находится один неспаренный электрон. В свою очередь ядро атома золота состоит из 79 протонов и 118 нейтронов. Золото относится к элементам d-семейства.
Радиус атома золота (вычисленный) составляет 174 пм.
Атомная масса атома золота составляет 196,966569(4) а. е. м.
Содержание золота в земной коре составляет 3,1×10 -7 %, в морской воде и океане – 5,0×10 –9 %.
Изотопы и модификации золота:
Свойства золота (таблица): температура, плотность, давление и пр.:
100 | Общие сведения | |
101 | Название | Золото |
102 | Прежнее название | |
103 | Латинское название | Aurum |
104 | Английское название | Gold |
105 | Символ | Au |
106 | Атомный номер (номер в таблице) | 79 |
107 | Тип | Металл |
108 | Группа | Драгоценный, переходный металл, металл платиновой группы |
109 | Открыт | Известно с древних времен |
110 | Год открытия | до 6000 года до н. э. |
111 | Внешний вид и пр. | Мягкий, тяжёлый металл жёлтого цвета |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | |
115 | Температура и иные условия перехода аллотропных модификаций друг в друга | |
116 | Конденсат Бозе-Эйнштейна | |
117 | Двумерные материалы | |
118 | Содержание в атмосфере и воздухе (по массе) | 0 % |
119 | Содержание в земной коре (по массе) | 3,1·10 -7 % |
120 | Содержание в морях и океанах (по массе) | 5,0·10 -9 % |
121 | Содержание во Вселенной и космосе (по массе) | 6,0·10 -8 % |
122 | Содержание в Солнце (по массе) | 1,0·10 -7 % |
123 | Содержание в метеоритах (по массе) | 0,000017 % |
124 | Содержание в организме человека (по массе) | 0,00001 % |
200 | Свойства атома | |
201 | Атомная масса (молярная масса) | 196,966569(4) а. е. м. (г/моль) |
202 | Электронная конфигурация | 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 1 |
203 | Электронная оболочка | K2 L8 M18 N32 O18 P1 Q0 R0 |
204 | Радиус атома (вычисленный) | 174 пм |
205 | Эмпирический радиус атома* | 135 пм |
206 | Ковалентный радиус* | 136 пм |
207 | Радиус иона (кристаллический) | Au + (в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле) |
208 | Радиус Ван-дер-Ваальса | 166 пм |
209 | Электроны, Протоны, Нейтроны | 79 электронов, 79 протонов, 118 нейтронов |
210 | Семейство (блок) | элемент d-семейства |
211 | Период в периодической таблице | 6 |
212 | Группа в периодической таблице | 11-ая группа (по старой классификации – побочная подгруппа 1-ой группы) |
213 | Эмиссионный спектр излучения | |
300 | Химические свойства | |
301 | Степени окисления | -3, -2, -1, 0, +1, +2, +3, +5 |
302 | Валентность | I, II, III, V |
303 | Электроотрицательность | 2,64 (шкала Полинга) |
304 | Энергия ионизации (первый электрон) | 890,13 кДж/моль (9,225554(4) эВ) |
305 | Электродный потенциал | Au + + e – → Au, E o = +1,692 В, Au 3+ + 2e – → Au + , E o = +1,401 В, Au 3+ + 3e – → Au, E o = +1,498 В |
306 | Энергия сродства атома к электрону | 222,747(3) кДж/моль (2,308610(25) эВ) |
400 | Физические свойства | |
401 | Плотность* | 19,30 г/см 3 (при 20 °C и иных стандартных условиях , состояние вещества – твердое тело), 17,31 г/см 3 (при температуре плавления 1064,18 °C и иных стандартных условиях , состояние вещества – жидкость) |
402 | Температура плавления* | 1064,18 °C (1337,33 К, 1947,52 °F) |
403 | Температура кипения* | 2970 °C (3243 K, 5378 °F) |
404 | Температура сублимации | |
405 | Температура разложения | |
406 | Температура самовоспламенения смеси газа с воздухом | |
407 | Удельная теплота плавления (энтальпия плавления ΔHпл)* | 12,55 кДж/моль |
408 | Удельная теплота испарения (энтальпия кипения ΔHкип)* | 342 кДж/моль |
409 | Удельная теплоемкость при постоянном давлении | 0,132 Дж/г·K (при 0-100 °C) |
410 | Молярная теплоёмкость* | 25,418 Дж/(K·моль) |
411 | Молярный объём | 10,2 см³/моль |
412 | Теплопроводность | 318 Вт/(м·К) (при стандартных условиях ), 318 Вт/(м·К) (при 300 K) |
500 | Кристаллическая решётка | |
511 | Кристаллическая решётка #1 | |
512 | Структура решётки | Кубическая гранецентрированная |
513 | Параметры решётки | 4,0781 Å |
514 | Отношение c/a | |
515 | Температура Дебая | 170 K |
516 | Название пространственной группы симметрии | Fm_ 3m |
517 | Номер пространственной группы симметрии | 225 |
900 | Дополнительные сведения | |
901 | Номер CAS | 7440-57-5 |
205* Эмпирический радиус атома золота согласно [1] и [3] составляет 144 пм.
206* Ковалентный радиус золота согласно [1] и [3] составляет 136±6 пм и 134 пм соответственно.
401* Плотность золота согласно [3] и [4] составляет 19,3-19,32 г/см 3 (при 0 °C и иных стандартных условиях , состояние вещества – твердое тело) и 19,3 г/см 3 (при 0 °C и иных стандартных условиях , состояние вещества – твердое тело).
402* Температура плавления золота согласно [4] составляет 1063,4 °C (1336,55 K, 1946,12 °F).
403* Температура кипения золота согласно [3] и [4] составляет 2856 °C (3129 К, 5173 °F) и 2880 °C (3153,15 K, 5216 °F) соответственно.
407* Удельная теплота плавления (энтальпия плавления ΔHпл) золота согласно [3] составляет 12,68 кДж/моль.
408* Удельная теплота испарения (энтальпия кипения ΔHкип) золота согласно [3] и [4] составляет
340 кДж/моль и 348,5 кДж/моль соответственно.
410* Молярная теплоёмкость золота согласно [3] составляет 25,39 Дж/(K·моль).
Источник
Физические и химические свойства золота, проба золота
Нет человека, который не видел бы золота в ювелирных изделиях. Ярко-желтый металл известен людям несколько тысяч лет. Однако в природе золото многолико. Размер его частиц колеблется от микрон до десятков сантиметров, цвет, из-за примесей, не всегда желтый. Встречается несколько минералов, похожих на золото по внешнему виду. Не зря существует поговорка «не все золото, что блестит». Чтобы успешно находить золото, ориентироваться в его ценности, не путать с похожими минералами, нужно знать свойства золота, где и как оно встречается в природе.
Физические свойства золота
Цвет золота ярко-желтый, если в нем отсутствуют примеси. Но чистое золото (и то не совсем) бывает почти исключительно в банковских слитках.
В природном золоте и ювелирных изделиях всегда есть примеси серебра, меди и др., то есть фактически мы всегда имеем дело со сплавами золота с другими металлами.
Цвет природного золота может зависеть от размера частиц. Например, золото Балейского месторождения Читинской области описано следующим образом: «Золото находится в жилах обычно в виде мельчайших частиц. Эти частицы иногда скапливаются, давая рыхлые сростки и скопления, видимые простым глазом. Внешний вид этих скоплений таков, что впервые видящий их наблюдатель не узнает в них золота. Это серо-зеленые пятна весьма непривлекательного вида с тусклым блеском или вовсе без блеска. Такого рода золото носит название «зеленого» золота. Гораздо реже встречается так называемое «желтое» золото, несколько отличающееся по виду и составу от «зеленого». Отношение количества «зеленого» к «желтому» примерно составляет 20:1.
В ювелирном деле золотом иногда называют сплавы, в которых собственно золота меньше 40 %. Сплав, известный как «белое золото», — это сплав золота с палладием. Десятая часть палладия придает слитку бело-стальной оттенок. Платина окрашивает золото в белый цвет даже интенсивнее палладия. Никель тоже позволяет получить золотые сплавы белого цвета с едва уловимым желтым оттенком.
Из белого золота изготавливают ювелирные украшения с бриллиантами. Такая оправа прекрасно отражает блеск камней и будто дополнительно их освещает. По сравнению с желтым белое золото более стойко к воздействию атмосферы. Таким образом, цвет сплавов зависит от количества и состава примесей (табл.1).
Табл.1. Цвет золота в зависимости от количества и состава примесей
Основной состав примесей
медь, серебро, никель; медь, серебро
никель, цинк, медь; палладий, серебро, медь
серебро, палладий, медь
Золото — очень мягкий металл, его твердость 2,5-3,0 по 10-балльной шкале твердости (шкале Мооса). В этой шкале самое твердое вещество — алмаз. Его твердость равна 10. Самый мягкое вещество — мел. Его твердость — 1. Твердость стекла – 5, хорошей стали – 4,5. В полевых условиях твердость проверяют, прежде всего, с помощью ножа. Его острием проводят по поверхности изучаемого минерала. Если нож оставляет царапину, значит твердость меньше 5.
Золото, имеющее твердость 2,5-3,0, не только легко царапается, но и при значительном усилии режется ножом. На нем можно оставить след даже сильно прикусив зубами. «На зуб» раньше пробовали золотые монеты. На поддельных монетах из меди сделать отметину зубами невозможно, а на золотой монете имея крепкие зубы отметку поставить можно. Проверка на твердость – это важный тест для отличия золота от похожих по цвету металлов или минералов.
Золото легко полируется и обладает высокой отражательной способностью. Через очень тонкие листы золота отлично могут проходить солнечные лучи, при этом тепловая их часть будет отражаться. По этой причине, тонкие слои золота используются для тонированных стекол современных небоскребов в жарком климате. Это позволяет экономить энергию, необходимую на то, чтобы содержать интерьер таких зданий в прохладности в течение всех горячих летних месяцев. Подобные тонкие слои золота используются также в защитном шлеме космонавтов, чтобы отражать большой поток инфракрасных лучей в открытом космосе.
Золото обладает исключительной способностью распыляться, давать частицы, соизмеримые с длиной световой волны, уноситься тоннами в виде мельчайшей пыли в реках, рассеиваться по полу, стенам и мебели золотосплавочных лабораторий и исчезать из банковского обмена за счет истирания монет. При золотом обращении ежегодно терялось от 0,01 до 0,1% веса монеты.
В этих исключительных свойствах золота известный австрийский геолог Зюсс видел назревающий «золотой голод» и указывал на необходимость осторожно решать вопрос о золотом обращении как основе мирового хозяйства. Может быть, опасения Зюсса были преждевременны, однако их значение осталось в силе, хотя темпы приближения золотого истощения не оправдались.
Золото имеет чрезвычайно высокую пластичность (тягучесть) и ковкость (расковывается до толщины 8∙10 -5 мм), т.е. из одного грамма золота можно получить лист фольги площадью до 1м 2 . Благодаря высокой пластичности, золото может быть измельчено, искривлено, сдавлено, сжато, золоту можно придать различную форму, не ломая на части. Фактически, желтый металл может быть истолчен до полупрозрачности, может быть тонким, как лист бумаги, и оставаться таким же красивым и блестящим. Производство тонколистового (сусального) золота позволяет покрывать им купола церквей, отделывать дворцовые залы.
Из одного грамма золота можно вытянуть проволоку длинной 2610 м. Получаемая нить очень тонкая (диаметром 2∙10 -6 мм), что необходимо сегодняшней электронной индустрии, где нужно создавать электрические цепи в чипах очень маленьких размеров. Из-за высокой электрической проводимости и устойчивости к окислению, золото имеет большой спрос в электронной промышленности. Сейчас неудивительно найти золото в таких устройствах как телевизор, мобильный телефон, калькулятор, не говоря уже о более сложной электронике.
Высокая ковкость золота еще один признак, позволяющий отличить золото от похожих минералов. Например, если положить частицу золота на твердый камень и ударить по ней молотком, то она расплющится, а кусочек желтого пирита рассыплется на мелкие частички.
Температура плавления золота составляет 1063˚ С, кипения 2947˚ С. Расплавленное золото имеет бледно-зеленый цвет. Пары золота зеленовато-желтого цвета. Все металлы, входящие в состав сплава с золотом, понижают температуру его плавления. При нагревании золота и его сплавов выше температуры плавления золото начинает улетучиваться, и летучесть его тем выше, чем выше температура. Летучесть золота в значительной мере возрастает также в том случае, когда в сплаве присутствуют другие металлы, обладающие летучими свойствами, например, цинк, мышьяк, сурьма, теллур, ртуть и др. Сплавы по своим свойствам не похожи на те металлы, из которых они образовались. Так, например, сплав золота с серебром обладает значительно большей твердостью, чем золото и серебро, но зато не имеет их ковкости и тягучести. То же самое дает и примесь меди.
Золото имеет еще одно отличительное качество, которое является, возможно, наиболее важным для золоторазведчика (кроме цены) — это плотность золота. Его плотность — 19,3 г/см 3 — означает, что оно весит в 19,3 раза больше, чем равный объем чистой воды. Более высокую плотность имеют только некоторые металлы платиновой группы (индий — 22,6 г/см 3 ). Частица золота в 2,5 раза тяжелее, чем такая же по размеру частица серебра, и приблизительно в 8 раз тяжелее куска кварца, который обычно находится рядом с золотом. 1 кг золота можно представить в виде куба с ребром 37,3 мм или шара диаметром 46,2 мм. Полстакана золотого песка, добытого из россыпного месторождения, также весит около килограмма. Высокая плотность золота – это свойство, которое чаще всего используется для его извлечения из породы.
Плотность самородного золота несколько ниже, чем химически чистого, и, в зависимости от примесей в нем серебра и меди, колеблется в пределах 18—18,5.
Табл. 2. Важнейшие физические свойства и диагностические признаки золота
Цвет черты (на неглазированной фарфоровой пластинке)
Твердость по шкале Мооса
Плотность при температуре 20º C
Температура, плавления, град.С
Удельная теплопроводность при температуре 0º C , Вт/(м∙К)
Сопротивление при температуре 0º, Ом
Электропроводность по отношению к меди, %
Предел прочности отожженного золота при растяжении, МПа
Химические свойства золота
Золото (Au, от латинского Aurum) — химический элемент 1-й группы периодической системы таблицы Менделеева, атомный номер 79. Почти все природное золото состоит из изотопа 197 Au. Валентность золота в химических соединениях обычно +1, +3. За прошедшие столетия химики (а до них алхимики) провели с золотом огромное количество различных экспериментов, и оказалось, что золото вовсе не так инертно, как об этом думают неспециалисты. Правда, сера и кислород, агрессивные по отношению к большинству металлов (особенно при нагревании), на золото не действуют ни при какой температуре. Исключение – атомы золота на поверхности. При 500–700°С они образуют чрезвычайно тонкий, но очень устойчивый оксид, не разлагающийся в течение 12 часов при нагреве до 800° С. Это может быть Au2O3 или AuO(OH). Такой оксидный слой найден на поверхности крупинок самородного золота.
Не реагирует золото с водородом, азотом, фосфором, углеродом, а галогены с золотом при нагревании образуют соединения: AuF3, AuCl3, AuBr3 и AuI. Особенно легко, уже при комнатной температуре, идет реакция с хлорной и бромной водой. С этими реактивами встречаются только химики. В быту опасность для золотых колец представляет иодная настойка – водно-спиртовый раствор иода и иодида калия:
Щелочи и большинство минеральных кислот на золото не действуют. На этом основан один из способов определения подлинности золота. Весь истолченный металл пересыпается в фарфоровую чашку, куда наливается азотная кислота в количестве, достаточном для покрытия всего металла. Чашку с кислотой и металлом, при непрерывном помешивании стеклянной палочкой, подогревают на примусе до кипения. Если при этом не происходит растворения металла и выделения пузырьков газа, то металл является золотом. Смесь концентрированных азотной и соляной кислот («царская водка») легко растворяет золото:
После осторожного выпаривания раствора выделяются желтые кристаллы комплексной золотохлористоводородной кислоты HAuCl4 ·3H2O. Царскую водку, способную растворять золото, знал еще арабский алхимик Гебер, живший в 9–10 веке. Менее известно, что золото растворяется в горячей концентрированной селеновой кислоте:
В концентрированной серной кислоте золото растворяется в присутствии окислителей: иодной кислоты, азотной кислоты, диоксида марганца. В водных растворах цианидов при доступе кислорода золото растворяется с образованием очень прочных дицианоауратов:
эта реакция лежит в основе важнейшего промышленного способа извлечения золота из руд — цианирования.
Действуют на золото и расплавы из смеси щелочей и нитратов щелочных металлов:
пероксиды натрия или бария: 2Au + 3BaO2 ® Ba[AuO2]2 + 3BaO,
водные или эфирные растворы высших хлоридов марганца, кобальта и никеля:
тионилхлорид: 2Au + 4SOCl2 ® 2AuCl3 + 2SO2 + S2Cl2, некоторые другие реагенты.
Интересны свойства мелкораздробленного золота. При восстановлении золота из сильно разбавленных растворов оно не выпадает в осадок, а образует интенсивно окрашенные коллоидные растворы – гидрозоли, которые могут быть пурпурно-красными, синими, фиолетовыми, коричневыми и даже черными. Так, при добавлении к 0,0075%-му раствору H[AuCl4] восстановителя (например, 0,005%-го раствора солянокислого гидразина) образуется прозрачный голубой золь золота, а если к 0,0025%-му раствору H[AuCl4] добавить 0,005%-й раствор карбоната калия, а затем по каплям при нагревании добавить раствор танина, то образуется красный прозрачный золь. Таким образом, в зависимости от степени дисперсности окраска золота меняется от голубой (грубодисперсный золь) до красной (тонкодисперсный золь).
При размере частиц золя 40 нм максимум его оптического поглощения приходится на 510–520 нм (раствор красный), а при увеличении размера частиц до 86 нм максимум сдвигается до 620–630 нм (раствор голубой). Реакция восстановления с образованием коллоидных частиц используется в аналитической химии для обнаружения малых количеств золота.
При восстановлении соединений золота хлоридом олова в слабокислых растворах образуется интенсивно окрашенный темно-пурпурный раствор так называемого кассиевого золотого пурпура (он назван так по имени Андреаса Кассия, стекловара из Гамбурга, жившего в 17 в.). Кассиев пурпур, введенный в расплавленную стеклянную массу, дает великолепно окрашенное рубиновое стекло, количество затрачиваемого при этом золота ничтожно. Кассиев пурпур применяется и для живописи по стеклу и фарфору, давая при прокаливания различные оттенки – от слаборозового до ярко-красного.
В геологических процессах подвижность золота связана с водными растворами, имеющими высокую температуру (сотни градусов) и находящимися под высоким давлением. Золото при этом может находиться в форме различных простых и смешанных комплексов: гидроксильных, гидроксохлоридных, гидросульфидных. В низкотемпературных гидротермальных условиях, а также в биосфере, миграция золота возможна в виде растворимых металлоорганических комплексов.
В нормальных природных условиях золото стойко к различным типам минеральных вод и атмосферной коррозии. Частицы золота практически не меняются с течением времени. Изделия из золота сделанные тысячи лет назад сохраняются практически неизменными в земле и морской воде. Со временем они не только не теряют своей ценности, но становятся дороже. Такая устойчивость дает основание относить золото к группе благородных металлов.
Проба золота
Количественное содержание химически чистого золота (по массе) в природном твердом растворе или сплаве (изделии) выражается пробой. В международной практике применяются метрическая (в большинстве стран, в том числе и в России) и каратная системы проб.
При метрической системе содержание металла определяется числом его единиц в 1000 единицах лигатурной массы раствора (сплава), при каратной в 24 единицах. До 1927 года в СССР, а также в дореволюционной России, действовала золотниковая система проб, при которой содержание золота определялось количеством золотников в фунте лигатурной массы (1 русский фунт = 409,5 г = 96 золотникам; 1 золотник = 4,27 г = 96 долям; 1 доля = 44,4 мг).
В метрической системе химически чистому золоту соответствует 1000-я проба, а твердый раствор (сплав), например, 750-й пробы, содержит 750 частей химически чистого золота и 250 частей примесей (лигатуры), или же 75,0% золота и 25,0% примесей.
Расчетом устанавливается взаимное отношение и перевод различных систем проб. Например, 450-я метрическая проба изделия (сплава) соответствует:
450/1000 ´ 96= 43,2 золотниковой
и 550/1000 ´ 24= 10,8 каратной пробам.
Самородное золото обладает различной пробой (наиболее часто 940-900, 890-740, 680-600-й и крайне редко 550-й). Для производства ювелирно-бытовых изделий обычно используются золотые сплавы различной пробы, так как золото в чистом виде слишком мягкое и легко истирается.
Ювелирным сплавам за счет добавления лигатурных цветных металлов (меди, серебра, реже никеля, палладия, цинка, кадмия и др.) придаются требуемые для механической обработки свойства и желательный цвет. В таблице 3 указаны наиболее часто используемые для производства ювелирных украшений сплавы и соотношение различных систем обозначения их пробы, распространенные в бывшем СССР и России.
Табл.3. Пробы и основной состав лигатуры ювелирных золотых сплавов, принятых в бывшем СССР и Российской Федерации
Система обозначения проб
*Пробы Российской Федерации
Золото в природе
Золото в небольших количествах содержится во многих горных породах. Среднее его содержание в литосфере (Кларк) составляет 4,3 мг/т.
Золото содержится в организмах и в растениях. Есть предположение, что золото имеет определенное значение для организма животных. В золе растений золото впервые обнаружено французским химиком Клодом Луи Бертолле в XVIII веке. По современным данным содержание золота в некоторых гумусовых почвах достигает 0,5 г/т. Растения, произрастающие на таких участках, поглощают золото, сосредотачивая его в корневой системе, стеблях, стволах и в ветвях. В настоящее время разработаны методы поиска месторождений (биогеохимические), основанные на выявлении ореолов с повышенным содержанием золота в золе растений.
Огромное количество золота содержится в гидросфере. Во всех видах пресных вод его среднее содержание составляет порядка 3∙10-9% (0,03 мг/т), но иногда многократно выше, например, в подземных водах золоторудных месторождений содержание золота достигает порядка 1 мг/т. На изменении содержания золота в подземных водах основан один из методов поиска золоторудных месторождений (гидрохимический метод).
В морских водах содержание золота также колеблется: в полярных морях — 0,05 мг/т, у берегов Европы — 1-3∙мг/т. Наиболее высокая концентрация золота отмечается в прибрежной зоне США — до 16 мг/т., в водах Карибского моря — 15-18 мг/т., в водах Мертвого моря — до 50 мг/т.
Океаны насыщаются золотом вследствие привноса его грунтовыми, поземными и поверхностными водами, за счет распыления метеоритов, выбросов вулканических веществ и ряда других естественных источников. Французскими исследователями было выяснено, что сицилийский вулкан Этна каждый день выбрасывает в виде мелких частиц более 2,5 кг и большая часть этого уходит в океан. По подсчетам каждый год в атмосфере Земли распыляется примерно 3,5 тыс. метеоритного вещества, содержащие примерно 18 кг золота, что составляет за миллион лет где-то 18 тыс.т. Поступление золота в океаны происходит также с речными и морскими взвесями, а также в виде растворимых металлоорганических комплексов. Циркулирующие на золотоносных площадях поверхностные и подземные водотоки содержат, как правило, золото, находящееся во взвешенном состоянии, или растворенное золото, которое может достигнуть океана. Особенно велик перенос золота речными системами. Специалисты посчитали, что только Амур в своих водах за год выносит в океан около 8,5 т золота.
Общее количество золота в водах Мирового океана оценивается в 25-27 млн.т. Это чрезвычайно много. Человечеством за все время добыто около 150 тыс.т. Ведутся изыскания технологий извлечения золота из воды океанов, запатентованы технические решения, но приемлемых экономических показателей добычи золота из воды пока не достигнуто.
В земной коре золото может находиться в сплошных горных массах— рудах или в разрушенных горных породах — россыпях. В первом случае оно называется рудным, а во втором — россыпным золотом. Россыпи обычно встречаются в долинах рек, ручейков или сухих логов и образуют более или менее мощные пласты, прикрытые слоем пустой породы, так называемыми торфами. Золото находится в россыпях в виде кусочков, чешуек, зерен и пыли.
Золото в рудных и россыпных месторождениях встречается главным образом в сплавах с серебром, медью, железом и другими металлами. Кроме этих природных сплавов золота известны также платинистое и родистое золото, в состав которых соответственно входят платина и родий. Чаще всего в состав самородного золота входит от 5 до 30 % серебра. Относительно редко, но все же встречается в природе сплав золота с 30—40% серебра, который называется электрумом. Довольно распространено в природе самородное медистое золото, состоящее из 74—80% золота, 2—16% серебра, 9—20% меди.
Больше всего в природе частиц золота размером от доли микрона до десятков микронов. Такие частицы называются дисперсными. Условно они делятся на грубодисперсные и тонкодисперсные (высокодисперсные). В грубодисперсных системах частицы имеют размеры от 1 мкм и выше, в тонкодисперсных — от 1 нм до 1 мкм (0,001 мм).
Дисперсные частицы золота есть в породах, в воде и в растениях. Такие частицы видны только в электронный микроскоп, их не удастся взвесить на лучших микроаналитических весах. Расчетная масса частицы размером 0,001 мм составляет всего 0,00000001 мг, а предел взвешивания лучших микроаналитических весов — 0,0001 мг. Количество мельчайших частиц золота несметное. В каждом грамме золота заключено больше 100 миллиардов таких частиц. При огромном количестве дисперсных частиц их извлечение представляет наибольшую трудность и обходится дороже всего.
Чрезвычайно много в природе также золотин размером порядка 0,01 мм. Самая крупная золотина этого класса (0,01 мм) имеет массу порядка 0,00001 мг и ее также невозможно взвесить на микроаналитических весах. В каждом грамме золота количество таких частиц превышает 100 миллионов. Несмотря на то, что золота мельче 0,01 мм в природе больше, чем любого другого, оно находится преимущественно в рассеянном состоянии. Иногда оно концентрируются в виде включений в некоторые минералы (пирит, арсенопирит и т.п.), но если свободное золото крупностью 0,01-0,1 мм попадает в речной поток, то оно преимущественно рассеивается. Мелкие легкие золотинки свободно переносятся во взвешенном состоянии даже при небольшой скорости течения.
Золото крупнее 0,1 мм относится к «гравитационному», то есть к такому, которое осаждается в воде под действием силы тяжести и образует скопления, выгодные для отработки — россыпные месторождения. Извлеченное из россыпей золото часто называют «золотой песок». Фактически так оно и есть, частицы золота легко пересыпаются и их можно насыпать в кожаный мешочек (раньше так носили в кармане или сумке), золотой песок можно ссыпать в бутылку (в ней удобно прятать золото) или в любую емкость.
Золотины размером 8 мм и более обычно имеют массу свыше 1 г и называются самородками. Различают самородки мелкие (1-10 г), средние (10-100 г), крупные (100-1000 г), весьма крупные (1-10 кг) и гигантские (более 10 кг). Однако иногда самородками называют также золотины «резко выделяющиеся по размерам среди других частиц металла», и нижний предел массы самородка принимают 0,1 грамма.
Самый крупный самородок золота найден в Австралии — “Плита Холтермана” (285 кг вместе с кварцем, чистого золота 83,3 кг); на Урале найден самородок золота “Большой треугольник” (36,2 кг). Большинство крупных самородков имеют свои имена (Табл.4).
Источник