Есть металлы у которых больше трех внешних электронов

Атомы и электроны

Атомно-молекулярное учение

Мы приступаем к изучению химии — мира молекул и атомов. В этой статье мы рассмотрим базисные понятия и разберемся с электронными формулами элементов.

Атом (греч. а — отриц. частица + tomos — отдел, греч. atomos — неделимый) — электронейтральная частица вещества микроскопических размеров и массы, состоящая из положительно заряженного ядра (протонов) и отрицательно заряженных электронов (электронные орбитали).

Описываемая модель атома называется «планетарной» и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом

Протон (греч. protos — первый) — положительно заряженная (+1) элементарная частица, вместе с нейтронами образует ядра атомов элементов. Нейтрон (лат. neuter — ни тот, ни другой) — нейтральная (0) элементарная частица, присутствующая в ядрах всех химических элементов, кроме водорода.

Электрон (греч. elektron — янтарь) — стабильная элементарная частица с отрицательным электрическим зарядом (-1), заряд атома — порядковый номер в таблице Менделеева — равен числу электронов (и, соответственно, протонов).

Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20) в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.

Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило: порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.

Электронная конфигурация атома

Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим электроны занимают различные энергетические уровни.

Энергетические уровни подразделяются на несколько подуровней:

    Первый уровень

Состоит из s-подуровня: одной «1s» ячейки, в которой помещаются 2 электрона (заполненный электронами — 1s 2 )

Состоит из s-подуровня: одной «s» ячейки (2s 2 ) и p-подуровня: трех «p» ячеек (2p 6 ), на которых помещается 6 электронов

Состоит из s-подуровня: одной «s» ячейки (3s 2 ), p-подуровня: трех «p» ячеек (3p 6 ) и d-подуровня: пяти «d» ячеек (3d 10 ), в которых помещается 10 электронов

Состоит из s-подуровня: одной «s» ячейки (4s 2 ), p-подуровня: трех «p» ячеек (4p 6 ), d-подуровня: пяти «d» ячеек (4d 10 ) и f-подуровня: семи «f» ячеек (4f 14 ), на которых помещается 14 электронов

Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а также узнаете об исключении, которое только подтверждает данные правила.

Подуровни: «s», «p» и «d», которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или атомным орбиталям, движутся электроны, создавая определенный «рисунок».

S-орбиталь похожа на сферу, p-орбиталь напоминает песочные часы, d-орбиталь — клеверный лист.

Правила заполнения электронных орбиталей и примеры

Существует ряд правил, которые применяют при составлении электронных конфигураций атомов:

  • Сперва следует заполнить орбитали с наименьшей энергией, и только после переходить к энергетически более высоким
  • На орбитали (в одной «ячейке») не может располагаться более двух электронов
  • Орбитали заполняются электронами так: сначала в каждую ячейку помещают по одному электрону, после чего орбитали дополняются еще одним электроном с противоположным направлением
  • Порядок заполнения орбиталей: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s

Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.

Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.

Без практики теория мертва, так что приступает к тренировке. Нам нужно составить электронную конфигурацию атомов углерода и серы. Для начала определим их порядковый номер, который подскажет нам число их электронов. У углерода — 6, у серы — 16.

Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.

Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил. А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся одним электроном дополнили первую ячейку.

Таким образом, электронные конфигурации наших элементов:

  • Углерод — 1s 2 2s 2 2p 2
  • Серы — 1s 2 2s 2 2p 6 3s 2 3p 4
Внешний уровень и валентные электроны

Количество электронов на внешнем (валентном) уровне — это число электронов на наивысшем энергетическом уровне, которого достигает элемент. Такие электроны называются валентными: они могут быть спаренными или неспаренными. Иногда для наглядного представления конфигурацию внешнего уровня записывают отдельно:

  • Углерод — 2s 2 2p 2 (4 валентных электрона)
  • Сера -3s 2 3p 4 (6 валентных электронов)

Неспаренные валентные электроны способны к образованию химической связи. Их число соответствует количеству связей, которые данный атом может образовать с другими атомами. Таким образом неспаренные валентные электроны тесно связаны с валентностью — способностью атомов образовывать определенное число химических связей.

  • Углерод — 2s 2 2p 2 (2 неспаренных валентных электрона)
  • Сера -3s 2 3p 4 (2 неспаренных валентных электрона)
Тренировка

Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных электронов. Ниже будет дано наглядное объяснение этой задаче.

Запишем получившиеся электронные конфигурации магния и фтора:

  • Магний — 1s 2 2s 2 2p 6 3s 2
  • Скандий — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1

Источник

Положение элементов — металлов в периодической системе, строение их атомов.

Из 110 элементов периодической системы более 80 — металлы.

Металлы –это химические элементы атомы которых отдают электроны внешнего (а иногда предвнешнего) электронного слоя превращаясь в положительные ионы.

Металличность определяется способностью атомов отдавать электроны. Чем меньше надо отдать электронов и чем легче их отдавать, тем ярче выражены металлические свойства атомов.

К элементам-металлам относятся s-элементы (за исключением Н и Не), все d — и f-элементы. Среди p-элементов металлические размещены в левой части периодической системы химических элементов под диагональю Бор В — Астату At. Также металлами являются элементы побочных подгрупп, т.к. они имеют на последнем слое 2 электрона и у них происходит заполнение d-подуровня предпоследнего слоя.
Для большинства элементов-металлов характерно небольшое количество электронов на внешнем энергетическом уровне их атомов (от 1 до 3) и сравнительно большие радиусы атомов(сурьма, висмут – 5, полоний — 6 электронов, но большой радиус атома), что обусловливает способность атомов металлов легко терять валентные электроны и образовывать положительно заряженный ион. Наиболее активным металлом является франций.

( Краткая запись в конспект: I, II, III, группы( исключение Н, He, B), главные подгруппы, побочные подгруппы, лантаноиды, актиноиды. На внешнем энергетическом уровне 1-3 электрона ( s или p ), в образовании связи принимают участие d- е предыдущего уровня. Все металлы имеют во внешней оболочке по одному или два электрона, могут легко их отдавать, образуя ионы с устойчивыми конфигурациями благородных газов. Заряд катиона равен количеству отданных электронов): ( Ме — ne-= Men+)

2. Металлы как простые вещества. Металлическая связь, металлические кристаллические решетки.

Металлические элементы образуют простые вещества, то есть металлы. Например, Алюминий — алюминий; Феррум — железо; Купрум — медь; Аргентум — серебро.

Для металлов характерной является общая металлическая связь и физические свойства, вид химической связи — металлический. Металлическая связьэто связь между атомами и катионами металла посредством обобществённых электронов. Металлическая связь является не направленной, поскольку валентные электроны распределены по всему кристаллу почти равномерно. Он существует в кристаллах и расплавах металлов и сплавов, в чистом виде характерен для щелочных и щелочноземельных металлов. У переходных металлов связь между атомами частично ковалентным.

Металлы имеют металлическую кристаллическую решётку в узлах которой находятся атомы и катионы металлов, вследствие отдачи отдельными атомами валентных электронов, а пространство между ними заполнено «электронным газом», становятся обобществленными всеми ионами металла и прочно связывают.

Все металлы имеют кристаллическое строение. Тип решетки зависит от химической природы и фазового состояния металла. Она имеет формы: гексагональную, кубическую, гранецентрированную, объёмноцентрированную.
3. Общие физические свойства металлов.

Наличие металлического связи обуславливает общие свойства металлов. Она определяет физические свойства металлов:

а) агрегатное состояниевсе металлы твёрдые вещества и кристаллического строения, кроме ртути Hg и францию Fr; . Твердость – все металлы кроме ртути и галия, при обычных условиях твердые вещества. Самые мягкие – натрий, калий. Их можно резать ножом; самый твердый хром Cr и вольфрам W. – царапает стекло.

б) цветс металлическим блеском от серебристо-белого цвета (Ag, Al, Ni, Pa) до темного серебристо-серого (Fe, Pb), за исключением золота Au и меди Cu.

Металлический блеск – электроны, заполняющие межатомное пространство отражают световые лучи, а не пропускают как стекло. Лучше всего отражают свет индий In и серебро Ag. В порошке все металлы, кроме АI и Мg, теряют блеск и имеют черный или темно – серый цвет. По окраске металлы условно делят на черные и цветные.К черным металлам чаще всего относят железо и его сплавы (чугун, сталь). Все другие — называют цветными.

в) плавкость. Металлы делятся на легкоплавкие( tпл 350,самые низкаие: Hg= — 38,87, ), галий «плавится» на ладони, и тугоплавкие( tпл 10 111213>

Дата добавления: 2016-01-26 ; просмотров: 2959 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Общая характеристика металлов IА–IIIА групп

Кодификатор ЕГЭ. Раздел 1.2.2. Общая характеристика металлов IА–IIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов.

Атомы элементов IА–IIIА групп имеют сходство в строении электронных оболочек и закономерностях изменения свойств, что приводит к некоторому сходству их химических свойств и свойств их соединений.

Металлы IA (первой группы главной подгруппы) также называются «щелочные металлы«. К ним относятся литий, натрий, калий, рубидий, цезий. Франций – радиоактивный элемент, в природе практически не встречается. У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон:

… ns 1 — электронное строение внешнего энергетического уровня щелочных металлов

Металлы IA группы — s-элементы. В химических реакциях они отдают один валентный электрон, поэтому для них характерна постоянная степень окисления +1.

Рассмотрим характеристики элементов IA группы:

Название Атомная масса, а.е.м. Заряд ядра ЭО по Полингу Мет. радиус, нм Энергия ионизации, кДж/моль tпл, о С Плотность,

г/см 3

Литий 6,941 +3 0,98 0,152 520,2 180,6 0,534
Натрий 22,99 +11 0,99 0,186 495,8 97,8 0,968
Калий 39,098 +19 0,82 0,227 418,8 63,07 0,856
Рубидий 85,469 +37 0,82 0,248 403,0 39,5 1,532
Цезий 132,905 +55 0,79 0,265 375,7 28,4 1,90

Все щелочные металлы — сильные восстановители. Это самые активные металлы, которые могут непосредственно взаимодействовать с неметаллами. С ростом порядкового номера и уменьшением энергии ионизации металлические свойства элементов усиливаются. Щелочные металлы образуют с кислородом оксиды Э2О. Оксиды щелочных металлов реагируют с водой с образованием основания (щелочи):

Водородные соединения щелочных металлов — это гидриды с общей формулой ЭН. Степень окисления водорода в гидридах равна -1.

Металлы IIA (второй группы главной подгруппы) — щелочноземельные. Раньше к щелочноземельным металлам относили только кальций, стронций, барий и радий, но по решению ИЮПАК бериллий и магний также называются щелочноземельными.

У щелочноземельных металлов на внешнем энергетическом уровне расположены два электрона. В основном состоянии это два спаренных электрона на s-подуровне:

… ns 2 — электронное строение внешнего энергетического уровня элементов IIA группы

Щелочноземельные металлы — s-элементы. Отдавая два валентных электрона, они проявляют постоянную степень окисления +2. Все элементы подгруппы бериллия — сильные восстановители, но восстановительные свойства выражены слабее, чем у щелочных металлов.

Характеристики элементов IIA группы:

Название Атомная масса, а.е.м. Заряд ядра ЭО по Полингу Мет. радиус, нм Энергия ионизации, кДж/моль tпл, о С Плотность,

г/см 3

Бериллий 9,012 +4 1,57 0,169 898,8 1278 1,848
Магний 24,305 +12 1,31 0,245 737,3 650 1,737
Кальций 40,078 +20 1,00 0,279 589,4 839 1,55
Стронций 87,62 +38 0,95 0,304 549,0 769 2,54
Барий 137,327 +56 0,89 0,251 502,5 729 3,5

Металлы подгруппы бериллия довольно активны. На воздухе они легко окисляются, образуя основные оксиды с общей формулой ЭО. Этим оксидам соответствуют гидроксиды Э(ОН)2.

Первый элемент IIA группы, бериллий, по большинству свойств гораздо ближе к алюминию (диагональное сходство). Это проявляется в свойствах бериллия. Например, он не взаимодействует с водой. Магний взаимодействует с водой только при нагревании. Кальций, стронций и барий — это типичные металлы. Они реагируют с водой при обычных условиях.

Элементам IIA группы соответствуют гидриды с общей формулой ЭН2.

Элементы IIIA (третьей группы главной подгруппы) — это бор, алюминий, галлий, индий, таллий и нихоний. В основном состоянии содержат на внешнем энергетическом уровне три электрона, которые распределены по s- и р-подуровням:

… ns 2 nр 1 — электронное строение внешнего энергетического уровня элементов IIIA группы

Все элементы подгруппы бора относятся к р-элементам. В химических соединениях проявляются степень окисления +3. Хотя для таллия более устойчивая степень окисления +1.

Характеристики элементов IIA группы:

Название Атомная масса, а.е.м. Заряд ядра ЭО по Полингу Радиус атома, нм Энергия ионизации,

Э → Э 3+ , эВ

Степень окисления в соединениях Валентные электроны
Бор 10,811 +5 2,01 0,091 71,35 +3, -3 2s 2 2p 1
Алюминий 26,982 +13 1,47 0,143 53,20 +3 3s 2 3p 1
Галлий 69,723 +31 1,82 0,139 57,20 +3 4s 2 4p 1
Индий 114,818 +49 1,49 0,116 52,69 +3 5s 2 5p 1
Таллий 204,383 +81 1,44 0,171 56,31 +1, +3 6s 2 6p 1

Металлические свойства у элементов подгруппы бора выражены слабее, чем у элементов IIA подгруппы. Элмент бор относится к неметаллам. Энергия ионизации атома у бора наибольшая среди элментов IIIA подгруппы. Алюминий относится к типичным металлам, но оксид и гидроксид алюминия проявляют амфотерные свойства. У таллия более сильно выражены металлические свойства, в степени окисления +1 он близок по свойствам к щелочным металлам. Наибольшее практическое значение среди элементов IIIA подгруппы имеет алюминий.

В общем металлы IА–IIIА подгрупп характеризуются:

  • небольшим количеством электронов на внешнем энергетическом уровне:
  • сравнительно сильными восстановительными свойствами;
  • низкими значениями электроотрицательности;
  • сравнительно большими атомными радиусами (относительно радиусов других атомов в периодах, в которых расположены соответствующие металлы);
  • металлической кристаллической решеткой;
  • высокой электро- и теплопроводностью;
  • твердым фазовым состоянием при нормальных условиях.

Источник

Читайте также:  Что мне подходит золото или серебро по гороскопу
Поделиться с друзьями
Металл и камни